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Chapter 1

Introduction

In the financial world, the term risk is usually associated with the possibility of losing
money. Three main types of risk can be distinguished (cf. [8]):

1. market risk - the risk of a change in the value of a financial position due to changes
in the value of the underlying components on which that position depends, e.g.,
stock and bond prices, exchange rates, commodity prices, etc. [13];

2. credit risk - the risk that a bank borrower or counterparty will fail to meet its
obligations in accordance with agreed terms [15];

3. operational risk - the risk of loss resulting from inadequate or failed internal
processes, people and systems or from external events [16].

These three types of risk do not include the full list of risks potentially affecting a
financial institution. In the list of financial risks we usually tend to ignore liquidity
risk. Most of the time we are not aware of its presence until a financial crisis hap-
pens. However, inadequate consideration of liquidity risk may often lead to disastrous
consequences.

The main aim of the thesis is to formulate a concept of liquidity risk and to incorporate
liquidity risk in market risk measurement. We first review two types of liquidity risk and
the relation between liquidity risk and market risk. To achieve our aim, we use a new
framework of portfolio theory introduced by Acerbi. A novelty of Acerbi’s framework is
that portfolio valuation includes a consideration of liquidity risk in portfolio valuation.
Under the new framework, the valuation of a portfolio becomes a convex optimization
problem. We give some examples of calculation schemes for the convex optimization
problem. Equipped with the new portfolio theory, we can quantify market liquidity risk
and introduce a new market risk measure which includes the impact of liquidity risk.
We end the thesis by giving some possible questions for further study.

9
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Chapter 2

Market Liquidity Risk

2.1 Liquidity and liquidity risk

The recent turmoil in financial markets which began in the middle of 2007 strongly
indicates that liquidity is a very important issue for financial institutions to consider.
Before the crisis, asset markets like mortgage markets and stock exchange markets
were booming, and funding was readily attainable for financial institutions at a low
cost. When the economic situation worsened, many types of assets became difficult to
sell without a loss. As is shown in Figure 2.1, we infer that before the subprime crisis,
liquidity was in good shape and the financial market was booming in 2005 and 2006.
When the crisis happened, liquidity conditions became tighter accompanied by a high
volatility of asset prices1. A similar result can be found in the Asian financial crisis in
1998. All these events emphasize the crucial role of liquidity.2

When talking about liquidity, we can distinguish between two kinds of liquidity, i.e.,
market liquidity and funding liquidity.

Definition 2.1 (cf. [8, 17]). Market liquidity is the ability of a market participant
to execute a trade or liquidate a position with little or no cost, risk or inconvenience.
Funding liquidity is the ability of a bank to fund increases in assets and meet obli-
gations as they come due, without incurring unacceptable losses.

Two kinds of risk are respectively associated with the above liquidity notions: one is
market liquidity risk, and the other is funding liquidity risk.

1The meanings of liquidity condition and asset price volatility are explained in the note part in
Figure 2.1.

2An exception shown in Figure 2.1 is the internet bubble from 20000. The reason might be that
the infrastructure of the financial market was not ruined during that period.

11



12 CHAPTER 2. MARKET LIQUIDITY RISK

Figure 2.1: Asset price volatility and funding and market liquidity

Definition 2.2. Market liquidity risk is the loss incurred when a market participant
wants to execute a trade or to liquidate a position immediately while not hitting the
best price. Funding liquidity risk is the risk that a bank is not able to meet the cash
flow and collateral need obligations.

When these two types of liquidity risk occur at the same time, they will give rise to
systemic liquidity risk (see [1]), which can be seen as the risk of drainage of liquidity
circulating in the whole financial system.

In what follows, we restrict ourselves to a discussion of market liquidity risk.

2.2 Structure of different financial markets

To analyze market liquidity risk, we first look into the trading mechanism which fa-
cilitates liquidity to participants. The mechanism is the financial market. A financial
market is a mechanism for participants to buy or to sell financial assets. When looking
into financial markets, we find that they differ in structure.

One type of the market is an organized market, such as exchanges for stocks. In
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organized markets, participants typically do not trade directly with each other but quote
their buy or sell orders on display for all participants in this market. The availability
of all quotes to all market participants increases the chance of participants to find the
best prices for their orders. The trading system in exchange market facilitates the
determination of the price in real time. We call this mechanism an auction. Through
auctions, market participants quote prices to sell or buy an asset. The combination of
all sale and purchase orders at a given time can be represented by a list of ask prices
and bid prices with corresponding trading volumes.

Definition 2.3. An ask price is the price that a seller is willing to accept for an asset.
A bid price is the price that a buyer is willing to pay for an asset.

The difference between the lowest ask price and the highest bid price will be called
the bid-ask spread. Stocks, futures and options are representatives of assets traded in
organized markets.

Another type of financial market distinct from an organized market is an over-the-
counter (OTC) market. There is usually no auction3 determining prices for the asset,
but participants trade by direct communication. The asset price is determined through
bilateral negotiations. Due to lack of information, we often cannot find data to study
this type of market easily. Among assets traded in OTC markets are currencies, bonds,
swaps, mortgage-backed securities and other derivatives.

The distinction between the above two types of market is not that organized markets
are more liquid than OTC markets4, but that we can get available data from organized
markets more easily than from OTC markets. In an exchange market we can quote
prices in real time, but in an OTC market we typically cannot.

Loebnitz identifies ways of price discovery for representative asset markets as shown in
Table 2.1.

Representative asset Stocks Bonds Currencies Options Futures
Price discovery Auctions Negotiations Negotiations Auctions Auctions

Table 2.1: Overview of price discovery for different assets

In our research we focus on organized markets such as stock exchanges where price
information is relatively easily discovered.

3Although for some assets such as bonds there are exchanges, the volume traded in these exchanges
is fairly low compared to the volume traded in the OTC market. See [11] for more information.

4For example, the foreign exchange (currency) market is an OTC market but is considered to be a
quite liquid market.
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2.3 Market risk and market liquidity risk

Referring to the definition of market risk in Chapter 1, market risk is usually calculated
from is the current market price of a position. However, this market price commonly
omits a consideration of liquidity issues, especially when an asset is quite illiquid. When
an asset becomes illiquid, it may happen that we cannot find a buyer to buy the asset
and consequently, the market risk increases as well. Because of the tendency of market
liquidity risk to compound market risk, we should not isolate market liquidity risk from
market risk. As a result, we argue that market liquidity risk is an integral part of
market risk. Accordingly, market risk measurement should take account of liquidity
risk.



Chapter 3

Conventional Market Risk
Measurement

In this chapter, we review conventional market risk measures. First we review the
definition of risk measure and see how the conventional risk measurement deals with
market risk. In section 3.3, we discuss how market liquidity risk methodologies were
incorporated in market risk measurement previously.

3.1 Definition of risk measure

Definition 3.1. Let X be a set of random variables. Then a risk measure ρ is a
function mapping X to the set of all real numbers R, i.e.,

ρ : X → R

Example 3.1 (Standard deviation). If we assume that the return of a portfolio, r, is
stochastic, then we define a risk measure as

ρ(r) := σr

where σr denotes the standard deviation of the return. In Markowitz portfolio theory
(cf. [12]), the standard deviation of the return can be simply used for measuring the
risk of a portfolio, as we shall see later in Section 4.1.

Example 3.2 (Worst-case replacement value). Let the portfolio Mark-to-Market value
Vt to be stochastic at time t. We define a risk measure as

ρ(Vt) := max{0, 95th percentile of Vt}

Then ρ(Vt) is referred to as the worst-case replacement value of the underlying portfolio
at time t.

15



16 CHAPTER 3. CONVENTIONAL MARKET RISK MEASUREMENT

Example 3.3 (Value-at-Risk (VaR)). Set Ps+t(t) = Vs+t − Vs. We refer to Ps+t(t) as
the profit and loss (P&L) over horizon t. We then define a risk measure on the set
{Ps+t(t)}s as

ρ(Ps+t(t)) := inf{x|P[Ps+t(t) < x] ≤ 1 − α}

where α ∈ (0, 1). The risk measure ρ(Ps+t(t)) is referred to as Value-at-Risk (VaR) [14]
and is denoted as VaRα(Ps+t(t)).

Example 3.4 (Expected Shortfall (ES)). We define

ρ(Ps+t(t)) := E[Ps+t(t)|Ps+t(t) > VaRα(Ps+t(t))]

where α ∈ (0, 1). This risk measure is referred to as an Expected Shortfall (ES) [2].

3.2 Coherent risk measure

Up to now we have been talking about risk measures without having reflected on what
properties a good risk measure should satisfy. Artzner et al. [4] have proposed a kind
of “good” risk measure, which they refer to as a coherent risk measure.1

Definition 3.2. A coherent risk measure is a risk measure, ρ, which satisfies the
following four properties (cf. [4]):

1. Monotonicity2: for all x, y ∈ X with x ≥ y, we have ρ(x) ≤ ρ(y).

2. Translational invariance: for all x ∈ X and α ∈ R, we have ρ(x + α) = ρ(x) − α.

3. Positive homogeneity: for all λ ≥ 0 and all x ∈ X, we have ρ(λx) = λρ(x).

4. Subadditivity: for all x, y ∈ X, we have ρ(x + y) ≤ ρ(x) + ρ(y).

The above four properties can be interpreted as follows:

1. Monotonicity: If one portfolio has higher values than another for every state, its
risk measure should be lower.

2. Translational invariance: If we add a certain amount α (say, cash) to our portfolio,
the risk measure of our portfolio should decrease by α.

1The reason we discuss a coherent risk measure here is that this risk measure will be used to induce
a new kind of risk measure, a coherent portfolio risk measure, as we shall see in Section 6.2.2.

2Here x ≥ y means x(ω) ≥ y(ω) for all ω in some underlying sample space Ω.
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3. Positive homogeneity: If the size of a portfolio does not influence the risk and
if the composition of the portfolio does not change, then changing the scale of
the portfolio by a factor λ should give rise to the resulting risk measure being
multiplied by λ.

4. Subadditivity: The risk measure of a portfolio should not be larger than the sum
of risk measures of each component.

We note that VaR is not a coherent risk measure as it is not subadditive.3 Acerbi [2]
has proven that ES is coherent.

3.3 Risk measures with liquidity risk

In this section, we review two existing approaches to quantifying market liquidity risk.
For a detailed review of more market liquidity risk models, we recommend [9].

3.3.1 Spread-adjusted approach

Bangia et al. [5] propose a spread-adjusted approach which takes into account liquidity
risk, i.e., the liquidity-risk adjusted Value-at-Risk (LAdj-VaR). They argue that liq-
uidity risk can be described by the bid-ask spread and develop a simple liquidity risk
add-on to the conventional VaR measure. First, they assume that the bid-ask spread
is stochastic and then use the relative spread, S, which is the bid-ask spread divided
by the mid-price, for modeling. Moreover, they define the liquidity risk on an average
relative spread S̄ plus a multiple of the volatility of the relative spread to cover most,
say 99%, of the spread distribution (see Figure 3.1).

Accordingly, the LAdj-VaR is defined as

LAdj-VaR := VaR +
1

2
Mid · (S̄ + aσ̄)

where VaR is the conventional VaR measure derived from the mid-price, Mid denotes
the mid-price, S̄ is the average of the relative spread S, σ̄ is the volatility of the relative
spread and a is a scaling factor such that we achieve 99% probability coverage of the
change in the relative spread.

This model is simple to use4 as long as we have data on mid-prices and bid-ask spreads,
Furthermore, it improves the conventional VaR measure by the inclusion of spreads.

3We refer to [8] for counter-examples. However, VaR follows other three properties.
4This point might be the main reason why some practitioners still use this method to consider

liquidity risk in practice while many more complicated methods have been proposed during the last
10 years.
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Figure 3.1: Combining market and liquidity risk

Figure 3.2: Daily spread distribution

However, this model has several weak points. First, the assumption behind this model
is that the relative spread should follow some unimodal distribution. In an example
from [5], we see that the daily spread distributions for Thai Baht and India Rupee are
quite likely to be multimodal distributions ( see Figure 3.2). Second, this model only
considers the effect of liquidity risk within the bid-ask spread, but it ignores the fact
that a large trading size might affect the asset price so as to exceed the spread. As
such, we may underestimate the liquidity risk using this model. In addition, a further
possible weak point is noticed by Loebnitz [11], who argues that the spread adjustment
in LAdj-VaR should be applied to a forecasted mid-price, rather than to an observed
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mid-price. Thus, he suggests to use a forecasted mid-price to modify the add-on in the
LAdj-VaR measure.

3.3.2 Stochastic supply curve approach

Jarrow and Protter [10] propose an adjustment to conventional risk measurement by
introducing a stochastic supply curve for security prices as a function of the transaction
size. They argue that the position size and direction (buy or sell) of a transaction
determine the price of a trade. We mention the major conclusions of their work [10].
The reason why we discuss this approach is mainly because these conclusions somehow
give a heuristic background to Acerbi’s framework of portfolio theory to be discussed
in the next chapter.

The first step in quantifying liquidity risk is to give a functional form of the supply
curve. Jarrow and Protter propose a linear supply curve with the slope depending on
the state of the economy (crisis or normal). The supply curve, S(t, x), is

S(t, x) = S(t, 0)[1 + αc1c(t)x + αn(1 − 1c(t))x]

where S(t, 0) is the classical asset price process independent of the trading size (say,
geometric Brownian motion), αc ≥ 0 and αn ≥ 0 are constants and represent crisis
and normal situations of the economy, and 1c(t) is an indicator for a crisis5. The crisis
coefficient αc should be strictly larger than coefficient αn, indicating a larger quantity
impact on the asset price in times of crisis.

Suppose that, prior to time T , markets are normal, so that we can ignore all liquidation
costs before time T . At time T , a crisis happens. Jarrow and Protter assume that an
immediate liquidation is required in times of crisis. As such, we have

V L
T = VT − LT ,

where V L
T is the value of the position when a crisis happens at time T , LT is the

liquidation cost, and VT is the value of the position without liquidation cost or the
impact of trading size. Hence, we have

VT = XT S(T, 0)

where XT is the size of long positions at time T (i.e., XT ≥ 0).

5That is,

1c(t) =
{

1 if the economy is in crisis at time t;
0 if the economy is normal at time t.
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Due to a crisis at time T , we have to liquidate θ ∈ [0, 1] of our position XT for cash.
So the liquidation cost is

LT = −θXT [S(T,−θXT ) − S(T, 0)]

As there is a crisis at time T , we have

S(T,−θXT ) = S(T, 0)[1 − αcθXT ]

To conclude, we have

V L
T = VT − LT

= VT + θXT [S(T,−θXT ) − S(T, 0)]

= XT S(T, 0) + θXT{S(T, 0)[1 − αcθXT ] − S(T, 0)}
= XT S(T, 0) − αcθ

2X2
T S(T, 0)

= VT [1 − αcθ
2XT ] ≤ VT

For risk management, the key input to a risk measure is the value of the portfolio. We
are now equipped with a new formulation of portfolio value incorporating liquidation
cost at a time of crisis. We can use risk measures such as VaR, ES and others, based
on this formulation which includes liquidity risk. In addition, by the monotonicity of
a coherent risk measure, V L

T ≤ VT implies ρ(V L
T ) ≥ ρ(VT ), that is, the risk measure

including liquidity risk is greater than that without liquidity risk.

This model is quite appealing in the sense that it includes the impact on asset prices
caused by the trading size. A potential deficiency is that the supply curve is assumed
to be linear.6

6See Section 3 in [10] for more information.



Chapter 4

New Framework of Portfolio Theory

4.1 Motivations

Modern portfolio theory, pioneered by H. Markowitz [12] in 1950s, proposed the idea
of considering a portfolio from a risk-reward point of view. The reward is described by
the expected return of the portfolio and the risk is the standard deviation of the return.

We assume that the return of an asset is stochastic. The return of a portfolio, r, is
the proportion-weighted linear combination of the assets’ returns ri (i = 1, . . . n), as
r =

∑n
i=1 wiri where

∑n
i=1 wi = 1. The reward of the portfolio is defined as E[r] =∑n

i=1 wiE[ri]. The risk of the portfolio is the standard deviation of the return of the

portfolio as σr =
√∑n

i=1

∑n
j=1 wiwjσiσjρij where σi is the standard deviation of the

return of asset Ai and ρij is the correlation between ri and rj.

We assume that a rational investor would prefer the portfolio with a lower standard
deviation compared to a portfolio with the same expected return but a higher standard
deviation. To manage the risk of our portfolio we usually set an upper bound for the
standard deviation of the portfolio. We then calculate the weights of our investment in
the assets to compose the desired portfolio. See [12] for more information.

However, Markowitz portfolio theory does not specifically define what a portfolio is,
and neither does it define what an asset is. Furthermore, the portfolio theory does not
take account of liquidity risk. In whole, these deficiencies will make portfolio valuation
inappropriate. So the questions in front of us are, how can we define a portfolio and
how we can develop a portfolio value model which can accommodate for liquidity risk.

In this chapter we will present a new framework for determining the value of a portfolio
proposed by Acerbi [1, 3], which gives a consideration of liquidity risk by introduc-
ing a so-called liquidity policy on a portfolio. When following this framework, two
fundamental assumptions are listed beforehand:

21
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1. A list of bid and ask prices for an asset can be found at a given time.

2. Any bid price should be lower than any ask price at a given time.

Most of the work in this chapter originates from Acerbi [1, 3].

4.2 Definition of asset

An asset is an object traded in the market (e.g., a security, a derivative or a commodity).
We assume that one unit of an asset corresponds to some standardized amount and that
an asset is not quoted by a single price, but by the bid and ask prices. In fact, not only
one bid price and one ask price are quoted in the market for the same asset at some
given time, but a list of many. Each of these prices is associated with a given maximum
trading size. The no-arbitrage assumption which we make is that any bid price is lower
than any ask price at any given time. An example of a list of bid and ask prices at
some given time are shown in Figure 4.1. The figure shows a real-time chart of the
order book for the stock ING Group. The left part of the chart gives the lowest 5 ask
prices and the highest 5 bid prices with their corresponding maximum trading sizes.

Figure 4.1: A list of bids and asks

To combine the above-mentioned market price information of an asset at a given time,
Acerbi introduces a function named Marginal Supply-Demand Curve (MSDC) [3]. To
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build such a function we consider a real-valued variable s which denotes a sale of s units
of asset, if s > 0, and a purchase of |s| units of asset, if s < 0. Here we exclude the case
s = 0, which means that we will not quote a price for nothing and that no notion of
mid-price is considered. The MSDC function m(s) is the last price hit in a trade (sale
or purchase) of size s. So, m(s) represents the bid price when s > 0 and the ask price
when s < 0.

To conclude, we have the following definition of asset.

Definition 4.1. An asset is an object traded in the market characterized by a Marginal
Supply-Demand Curve (MSDC) which is defined as a map m : R \ {0} → R satisfying

1. m(s) is non-increasing, i.e., m(s1) ≥ m(s2) if s1 < s2;

2. m(s) is càdlàg (i.e., right-continuous with left limits) for s < 0 and làdcàg (i.e.,
left-continuous with right limits) for s > 0.

Condition 1 represents the no-arbitrage assumption. Condition 2 ensures that MSDCs,
and especially ladder MSDCs as we shall see later, have nice mathematical properties.
In contrast with condition 1, we will not heavily use this assumption. Instead, we will
mostly make use of the fact that MSDCs are integrable.

As an example, we continue with the above case of ING Group. The MSDC is sum-
marized in Table 4.1. The MSDC can be directly identified from the order book. We
can see that the MSDC in this example is non-increasing which follows the above no-
arbitrage requirement and is piecewise constant. We refer to such a piecewise constant
MSDC as a ladder MSDC. We will consider this more closely in Section 5.2.

s ∈ m(s)

Asks

[-9440, -7940) 2.8710
[-7940, -6940) 2.8700
[-6940, -4140) 2.8690
[-4140, -2070) 2.8680

[-2070,0) 2.8660

Bids

(0, 1170] 2.8600
(1170, 3240] 2.8590
(3240, 4140] 2.8580
(4140,4640] 2.8570
(4640,8161] 2.8560

Table 4.1: MSDC of ING

We call the limits m+ := m(0+) the best bid and m− := m(0−) the best ask. The bid-ask
spread is denoted by δm and is the difference between the best ask and the best bid,
i.e., δm := m− − m+.

We will call a security any asset whose MSDC is positive (e.g., a stock, an option, a
bond, a commodity) and a swap any asset whose MSDC can take both positive and
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negative values (e.g., a CDS, a repo). Note that any asset with only negative MSDC
can be converted to a security-type by taking the absolute value of its MSDC.

A particular example of the asset given by Definition 4.1 is the cash asset.

Definition 4.2. 1 Cash is the asset representing the currency paid or received when
trading any asset. It is characterized by a constant MSDC, m0(s) = 1, (i.e., one unit)
for any s ∈ R \ {0}.

We say the cash is a perfectly liquid asset by the following definition.

Definition 4.3. An asset is called perfectly liquid if its MSDC is constant at a given
time. Otherwise, it is called illiquid.

We can only choose one currency as our cash. For example, if we choose the euro as
our cash asset, then the dollar will be seen as an illiquid asset which can be bought or
sold at different bid or ask prices. If we choose the dollar as our cash asset, then the
opposite is true.

Definition 4.4. The proceeds for a transaction of s units of an asset with MSDC m
is defined as

P (s) :=

∫ s

0

m(x)dx

The proceeds is the total money we receive for a sale of s units of one asset and minus
the total money we pay for a purchase of s units.

4.3 Portfolio

4.3.1 Definition of portfolio

We define a portfolio as a vector of real numbers. Each term represents the holding
volume of the corresponding asset in our portfolio.

Definition 4.5. A portfolio p is a vector of real numbers, p := (p0,
−→p ) = (p0, p1, . . . , pN) ∈

RN+1, where pi (i = 0, 1, . . . , N) are the holding volume of asset Ai. p0 is the holding
volume of cash, which is called the portfolio liquidity, and −→p = (p1, . . . , pN) is the
asset’s position. We call them long-, short- or zero-positions in asset Ak if pk > 0,
pk < 0 or pk = 0, respectively.

1This definition is modified from the definition of euro in [3] or dollar in [1].
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In what follows, we call P := RN+1 the portfolio space. Note that the usual operations
of addition and scalar multiplication are valid in P . In Section 4.5 we will see that
portfolio values do not have such a linear structure (see Theorem 4.5). We will later
write a portfolio p plus a units of cash asset as p + a = (p0 + a,−→p ) for simplicity.

Given Definition 4.5, the next question arising is what the value of a portfolio can
be. Given N types of illiquid assets, A1, . . . , AN , let pi be the holding volume of asset
Ai, i = 1, . . . , N . We thus consider a portfolio p = (p0, p1, . . . , pN). First we give some
preliminary definitions.

Definition 4.6. The liquidation Mark-to-Market(MtM) value of a portfolio p ∈
P is the sum of each proceeds Pi for asset Ai, given by

L(p) :=
N∑

i=0

Pi(pi) = p0 +
N∑

i=1

∫ pi

0

mi(x)dx

L(p) is the total cash we get from the liquidation of all our positions. This situation
can be seen as an extreme case where we have to immediately close all positions in our
portfolio. The opposite extreme case is to keep our portfolio as it is, i.e., to liquidate
nothing.

Definition 4.7. The uppermost Mark-to-Market(MtM) value of a portfolio p ∈
P is given by

U(p) :=
N∑

i=0

(m+
i ·max(pi, 0)+m−

i ·min(pi, 0)) = p0+
N∑

i=1

(m+
i ·max(pi, 0)+m−

i ·min(pi, 0))

where m+
i and m−

i are the best bid and the best ask for asset Ai.

Note that U(p) ≥ L(p), as the MSDC is non-increasing. The difference in value between
these two extreme cases is called the uppermost liquidation cost.

Definition 4.8. The uppermost liquidation cost of a portfolio p ∈ P is given by

C(p) := U(p) − L(p)

Remark. C(p) ≥ 0 for all portfolio p ∈ P as U(p) ≥ L(p).
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4.3.2 Properties of operators U,L and C

In this section we review some useful properties of operators U,L and C that will be
used later in Section 4.5.2 and 6.2.2. By definitions of U,L and C (see Section 4.3.1) it
is easy to show the following properties.

Proposition 4.1. Let p, q ∈ P and θ ∈ [0, 1].

• The liquidation MtM value operator L : P → R

1. is concave, i.e., L(θp + (1 − θ)q) ≥ θL(p) + (1 − θ)L(q).

2. L(λp) ≤ λL(p) if λ ≥ 1.

• The uppermost MtM value operator U : P → R

1. is concave, i.e., U(θp + (1 − θ)q) ≥ θU(p) + (1 − θ)U(q).

2. is positive homogeneous, i.e., U(λp) = λU(p) if λ ≥ 0.

• The uppermost liquidation cost operator C : P → R+

1. is convex, i.e., C(θp + (1 − θ)q) ≤ θC(p) + (1 − θ)C(q).

2. C(λp) ≥ λC(p) if λ ≥ 1.

4.4 Liquidity policy

From the above analysis of the two extreme cases L and U in Section 4.3.1, we infer
that the Mark-to-Market value of a portfolio should make sense for different market
circumstances. This means that the portfolio value is subject to some liquidity con-
straints. To give a formal interpretation to these liquidity constraints, the concept of
liquidity policy is introduced.

Definition 4.9. A liquidity policy L is a closed and convex subset of P satisfying

1. If p = (p0, p⃗) ∈ L and a ≥ 0, then p + a = (p0 + a, p⃗) ∈ L.

2. If p ∈ L, then (p0, 0⃗) ∈ L.
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Remark. As we will see in Section 4.5, following Acerbi’s framework, the portfolio
valuation becomes a convex optimization problem. From the perspective of optimization,
a liquidity policy gives closed and convex constraints to the optimization problem of
portfolio value calculation. If the liquidity policy is not closed but the optimal solution
lies on the boundary of the domain, then we have to assign −∞ to the portfolio value.
To avoid the occurrence of this, we define the liquidity policy to be closed. The convexity
ensures that the optimal value we find is unique.

Example 4.1 (Liquidating-nothing policy). The uppermost MtM value operator U
implies such a liquidity policy as the liquidating-nothing policy

LU := P

This liquidity policy means to keep our portfolio as it is.

Example 4.2 (Liquidating-all policy). The liquidation MtM value operator L implies
the liquidating-all policy

LL := {p = (p0, p⃗) ∈ P|p⃗ = 0⃗}

This liquidity policy means to liquidate all positions in our portfolio for cash.

Example 4.3 (α-liquidation policy). Let α = (α1, . . . , αN), αi ∈ [0, 1] for i = 1, . . . , N .
A generalized liquidity policy which includes the above two liquidity policies is a so-
called α-liquidation policy

Lα := {q = (q0, q⃗) ∈ P|q0 ≥ p0 + L(α ∗ p⃗)}

In this definition, ∗ denotes termwise multiplication: α ∗ p⃗ = (α1p1, . . . , αNpN). p =
(p0, p⃗) is any given portfolio in P . This liquidity policy can be seen as a situation when
we have to liquidate part of our portfolio for cash at some time.

Example 4.4 (Cash liquidity policy). An example of the liquidity policy which sets a
minimum cash requirement for a portfolio is the cash liquidity policy as

L(c) := {p ∈ P|p0 ≥ c ≥ 0}

It can be interpreted as the minimum cash requirement so that part of the portfolio
can be immediately liquidated to obtain the minimum amount of cash.

We say a liquidity policy L1 is more restrictive than another liquidity policy L2 if we
have L1 $ L2. As any liquidity policy L except P itself satisfies L $ P = LU , so we
say the liquidating-nothing policy LU is least restrictive.

On the contrary, there is no most restrictive liquidity policy. Suppose we have a most
restrictive liquidity policy L, then we can define another liquidity policy La as La =
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{p + a|p ∈ P , a > 0}. By the definition of a liquidity policy, we have La $ L. Hence
La is more restrictive than L.

Note that a portfolio is not supposed to satisfy a liquidity policy all the time. The
meaning of the policy is that the portfolio will be prepared to satisfy that policy in-
stantaneously if needed, which will be clarified in the next section.

4.5 Portfolio value

4.5.1 Definition of portfolio value

With different liquidity policies, the values of a portfolio should be different. In this
section, we will present Acerbi’s framework for portfolio value. We first mention the
following definition.

Definition 4.10. Given two portfolios p,q ∈ P , a portfolio q is attainable from p,
and we write q ∈ Att(p) ⊆ P , if q = p − r + L(r) for some r ∈ P .

This means we can obtain portfolio q from p by liquidating r and adding L(r) to the
cash.

Now we have the key definition:

Definition 4.11. The Mark-to-Market (MtM) value or simply the value of a
portfolio p subject to a liquidity policy L is a function V L : P → R

∪
{−∞} defined by

V L(p) := sup{U(q)|q ∈ Att(p)
∩

L}

Let us give an interpretation for this definition:

• If the portfolio p already satisfies the liquidity policy L (i.e., p ∈ L), then this
portfolio can be marked by the uppermost MtM value U(p).

• If p /∈ L and Att(p)
∩

L ≠ ∅, then we consider all portfolios q ∈ Att(p)
∩

L and
say that the value of the portfolio p is the maximum of U(q) for q ∈ Att(p)

∩
L.

And the optimal portfolio q∗ for which U(q∗) attains its maximum will satisfy
q∗ ∈ L.

• If p /∈ L and Att(p)
∩

L = ∅, this means that there is no portfolio attainable
from p that can satisfy L, then we define the portfolio value to be −∞.
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Remark. In the definition we do not want to treat with the case that V L(p) = ∞
caused by at least one position pi of our portfolio p converging to ∞. However, the case
that at least one position pi in our portfolio converges to ∞ is not realistic and does
not make sense in practice. That means that the positions in our portfolio are usually
bounded by some natural boundaries, for example, by the limited volumes in the market.

4.5.2 Properties of portfolio value map V L

The determination of the value of a portfolio corresponds to an optimization problem.
However, a critical question arising is how to solve the optimization problem of portfolio
value as the constraints in Definition 4.11 are not explicit. First we state the following
lemma.

Lemma 4.2. Let q ∈ Att(p). Then U(q) ≤ U(p).

Then we present the following proposition to transform the constraints into explicit
equalities and inequalities.

Proposition 4.3. Definition 4.11 is equivalent to

V L(p) = sup{U(p− r) + L(r)|r ∈ P ,p− r + L(r) ∈ L}

This optimization problem is convex.

Proof. As in Definition 4.11 the variable q ∈ Att(p), we change it to q = p− r + L(r)
for some r ∈ P . As q ∈ L, then we have p − r + L(r) ∈ L. By definitions of L and U
(see Definition 4.6 and 4.7), we have that

U(q) = U(p − r + L(r)) = U(p − r) + L(r)

From the convexity of liquidity policy L (see Definition 4.9), we know the optimization
problem is convex.

Skipping the case when V L(p) = −∞, we can also write this convex optimization
problem in Proposition 4.3 as {

max U(p − r) + L(r)
s.t. p − r + L(r) ∈ L

For any portfolio p, no matter which kind of liquidity policy we hold, we have the
following proposition.
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Proposition 4.4. If L1 $ L2, then V L1(p) ≤ V L2(p) for all p ∈ P. Furthermore,
V L(p) ≤ U(p) for any liquidity policy L.

Proof. For liquidity policies L1 and L2, we have

V L1(p) = sup{U(q1)|q1 ∈ Att(p)
∩

L1}

and
V L2(p) = sup{U(q2)|q2 ∈ Att(p)

∩
L2}

Since L1 $ L2, we have q1 ∈ Att(q2). By Lemma 4.2, we have U(q1) ≤ U(q2). From
the properties of supremum, we obtain V L1(p) ≤ V L2(p). Since the liquidating-nothing
policy LU is the least restrictive, we have V L(p) ≤ U(p) for any liquidity policy L.

An important characterization of the portfolio value map V L is provided by the following
theorem.

Theorem 4.5. Let L be any liquidity policy. Then we have the following properties of
the map V L:

1. It is concave, i.e., for any θ ∈ [0, 1] and for any p, q ∈ P,

V L(θp + (1 − θ)q) ≥ θV L(p) + (1 − θ)V L(q)

2. It is translationally supervariant, i.e., for any p ∈ P and for any a ≥ 0,

V L(p + a) ≥ V L(p) + a

Proof. Let r and s be the solutions to the optimization problem for V L(p) and V L(q),
respectively. Hence, we have V L(p) = U(p − r) + L(r) and V L(q) = U(q − s) + L(s).
From the concavity of U and L (see Proposition 4.1), we have

U(θ(p − r) + (1 − θ)(q − s)) ≥ θU(p − r) + (1 − θ)U(q − s)

and
L(θr + (1 − θ)s) ≥ θL(r) + (1 − θ)L(s)

Combining the above two inequalities and taking the supremum, we get the first result.

We note that U(p + a− r) + L(r) = U(p− r) + L(r) + a. By the definition of liquidity
policy (see Definition 4.9), we infer that the feasible set of the optimization for V L(p)
is the subset of that of the optimization for V L(p + a). Hence the optimal value of
V L(p + a) is not less than that of V L(p) + a.

Theorem 4.5 shows an important principle that blending two portfolios into one gener-
ates additional value.



Chapter 5

Examples of MSDC Models

In previous chapter we have reviewed Acerbi’s framework for portfolio valuation, and
we find that portfolio valuation corresponds to a convex optimization problem. We now
address the following questions:

1. How can we model the MSDC in practice?

2. How can we calculate portfolio value effectively?

In this chapter, we will provide answers to these questions.

5.1 Continuous MSDCs

We set our liquidity policy to be the cash liquidity policy L(c). The value of a given
portfolio can be determined by solving the following convex optimization problem:{

max U(p − r) + L(r)
s.t. p0 − r0 + L(r) = c

Note that the cash component r0 of r plays no role in the optimization problem, as the
equations

U(p− r) + L(r) = p0 +
N∑

i=1

(m+
i max(pi − ri, 0) + m−

i min(pi − ri, 0)) +
N∑

i=1

∫ ri

0

mi(x)dx

and

p − r + L(r) = (p0, p⃗ − r⃗) +
N∑

i=1

∫ ri

0

mi(x)dx

31
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do not depend on r0. So we may as well take r0 = 0 for simplicity.

The above convex optimization problem can hence be written as{
max U(p − r) + L(r)
s.t. L(r) = c − p0

In Section 5.1.1 we study this optimization problem by making assumptions on the
underlying MSDC. Note that the cash liquidity policy yields an equality constraint
only. We will study general equality and inequality constraints later in Section 5.1.3.

5.1.1 Continuous MSDCs in general

We first assume that the MSDCs mi(s) are continuous on R (i.e., mi(0) are supposed
to exist) and are strictly decreasing for all i = 1, . . . , N .

To obtain the solution to the optimization problem for portfolio valuation characterized
by such MSDCs, we have the following proposition.

Proposition 5.1. The solution ropt = (0, r⃗opt) to the above convex optimization problem
with the continuous MSDCs and the cash liquidity policy is unique and is given by

ropt
i = m−1

i (
mi(0)

1 + λ
), if p0 < c

ropt
i = 0, if p0 ≥ c

where m−1
i denote the inverse of the MSDC function mi and λ is the Lagrange multiplier.

Proof. We use the Lagrange multiplier method. The case p0 ≥ c is trivial as p ∈ L(c)
and hence V L(c)(p) = U(p).

Consider the case p0 < c. The original convex optimization problem can be written as{
min −U(p − r) − L(r)
s.t. − L(r) + c − p0 = 0

The function −L(r) + c − p0 is convex with respect to variable r. We introduce an
auxiliary function

G(r, λ) = −U(p − r) − L(r) − λ[L(r) − c + p0]
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and solve the equations ∂G(r,λ)
∂ri

= 0. For any i ∈ {1, . . . , N}, we have

∂

∂ri

[−U(p − r) − L(r) − λ(L(r) − c + p0)] = 0

⇐⇒ ∂

∂ri

[−p0 −
N∑

i=1

mi(0)(pi − ri) −
N∑

i=1

∫ ri

0

mi(x)dx − λ(
N∑

i=1

∫ ri

0

mi(x)dx − c + p0)] = 0

⇐⇒mi(0) − (1 + λ)mi(ri) = 0

⇐⇒ropt
i = m−1

i (
mi(0)

1 + λ
)

The Lagrange multiplier λ can be found from the equation L(r) = c − p0.

Remark. Since we have
∂L(r)

∂ri

= mi(ri)

and
∂C(r)

∂ri

= mi(0) − mi(ri)

and then from the equation mi(0) − (1 + λ)mi(ri) = 0, we find that

∂C(r)

∂ri

− λ
∂L(r)

∂ri

= 0

⇐⇒λ =
dC

dL

We see that the Lagrange multiplier λ can be interpreted as the marginal cost of the
liquidation.

For practical modeling purposes, we can extend the continuous MSDC to the case where
the MSDC is not continuous at the point 0, i.e., to the case where the bid-ask spread
exists. We only need to change the point mi(0) to the limit m+

i .

5.1.2 Exponential MSDCs

In this section, we continue our discussion of continuous MSDCs by looking at ex-
ponential MSDCs. It turns out that exponential MSDCs form an effective means of
characterizing the asset and determining portfolio value by way of convex optimization.
We will discuss this in Section 5.3.1.
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We consider that there are N illiquid assets characterized by exponential MSDCs
mi(s) = Mie

−kis with Mi, ki > 0 for all i = 1, . . . , N . Using this we have

U(p) = p0 +
N∑

i=1

mi(0)pi = p0 +
N∑

i=1

Mipi

and

L(p) = p0 +
N∑

i=1

∫ pi

0

mi(x)dx = p0 +
N∑

i=1

Mi

ki

(1 − e−kipi)

We compute the Mark-to-Market value of a portfolio with long positions pi > 0 for all
i = 1, . . . , N under the cash liquidity policy L(c) and assume that p0 < c. Following
Proposition 5.1, we have

ropt
i =

log(1 + λ)

ki

, for i = 1, . . . , N,

with

λ =
c − p0∑N

i=1
Mi

ki
− c + p0

Hence, the portfolio value under the cash liquidity policy equals

V L(c)(p) = U(p − ropt) + L(ropt) =
N∑

i=1

Mi(pi −
log(1 + λ)

ki

) + c

Example 5.1 (Impact of the liquidity risk factor). In exponential MSDCs, M⃗ =

(M1, . . . , MN) can be seen as the market risk factor and k⃗ = (k1, . . . , kN) as the liquidity
risk factor. Thus, we can construct different portfolio value models to see how liquidity
risk influences the value of a portfolio, and therefore, we make the following statements:

1. When M⃗ is multivariate normally distributed and k⃗ = 0⃗, then the portfolio value
model is a Gaussian model with perfect liquidity.

2. When M⃗ is multivariate normally distributed with constant k⃗ ̸= 0⃗, then the port-
folio value model is a Gaussian model with constant liquidity risk factor. How-
ever, the portfolio value distribution shifts to the left compared to the distribution
without liquidity risk.

3. When (M⃗, k⃗) is multivariate normally distributed and k⃗ is independent of M⃗ ,
then the shape of the portfolio value distribution is significantly different from
the normal distribution.
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4. When (M⃗, k⃗) is multivariate normally distributed and k⃗ is negatively correlated1

with M⃗ , then the portfolio value distribution becomes more dispersed.
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Figure 5.1: Different portfolio value distributions

The above results are illustrated in Figure 5.1 generated by Monte Carlo simulation.
The red lines are normal distributions with the parameters estimated from the corre-
sponding portfolio value distributions.

Example 5.2 (A portfolio of two illiquid assets with continuous MSDCs). We continue
with exponential MSDCs, and find that the larger the liquidity risk factor ki is, the more
illiquid the corresponding asset is. Suppose, for example, that there are two illiquid
assets A1, with parameters M1 = 1 and k1 = 10−4, and A2, with M2 = 1 and k2 = 10−5.
The MSDCs for these two assets are depicted in Figure 5.2. We can see that the the
MSDC of asset A1 has a wider range than the MSDC of asset A2 for a same range of
trading units.

1The idea is that: when the asset price is expected to go up, many investors are willing to buy such
an asset, and thus this will increase the liquidity of the asset; when the price is expected to go down
investors are reluctant to buy the asset and thereby increase the liquidity risk. However, this result
need to be confirmed by more empirical study in the future.
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Figure 5.2: MSDCs of A1 and A2

We then use this two-asset model to verify the properties in Proposition 4.1. The
concavity of the operators U and L and the convexity of operator C are illustrated in
Figure 5.3.

Suppose that our portfolio is p = (0, 1000, 1000). The uppermost MtM portfolio value
and the liquidation MtM portfolio value are equal to:

U(p) = p0 +
2∑

i=1

Mipi = 2000,

and

L(p) = p0 +
2∑

i=1

Mi

ki

(1 − e−kipi) = 1946.6

Suppose that the liquidity policy is the cash liquidity policy, L(c) = {p|p0 ≥ c, c =
1000}. Then we obtain the solution

λ =
c − p0∑2

i=1
Mi

ki
− c + p0

= 9.2 × 10−3,

ropt
1 =

log(1 + λ)

k1

= 913.25,

ropt
2 =

log(1 + λ)

k2

= 91.32,
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(a) Concavity of operator U (b) Concavity of operator L

(c) Convexity of operator C

Figure 5.3: Different properties of operators U,L and C

and the corresponding portfolio value reads

V L(c)(p) =
2∑

i=1

Mi(pi −
log(1 + λ)

ki

) + c = 1995.4

From Figure 5.4(a), we see that the portfolio value will decrease when we need more
cash. From the partial derivative of V with respect to c,

∂V

∂c
=

−c∑2
i=1

Mi

ki
− c + p0

=
−c

1.1 × 105 − c
,

we can moreover infer that when the cash needed increases the portfolio value is de-
creasing at a faster rate. See Figure 5.4(b).
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Figure 5.4: Portfolio values under the cash liquidity policy

In financial-economic terms, this can be understood as follows. When we have a liquidity
policy which urges us to gather more cash, we have to be prepared to liquidate more
positions. As the assets in our portfolio are illiquid, the liquidation makes the sale of
assets hitting lower bid prices and thus makes our portfolio value decreasing compared
to the uppermost MtM value. Moreover, when we need to liquidate more positions, we
first liquidate the most liquid part of our portfolio for cash and this will cause a loss.
When we need more cash, the liquidation of more illiquid part of the portfolio makes
the loss being much larger and thereby makes the portfolio value decreasing faster.

Example 5.3 (Properties of the portfolio value map). The concavity of the portfolio
value map is illustrated in the special cases of U and L in Figure 5.3(a) and Figure 5.3(b).
To check the result of translational supervariance in Theorem 4.5, we experiment with
an exponential MSDC. We add an amount of cash to portfolio p. The new portfolio
value V (p + a) under the cash liquidity policy reads

V L(c)(p + a) =
N∑

i=1

Mi(pi −
log(1 + λ)

ki

) + c

with

ropt
i =

log(1 + λ)

ki

, for i = 1, . . . , N

and

λ =
c − p0 − 2a∑N

i=1
Mi

ki
− c + p0 + 2a
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We assume that there is only one illiquid asset in our portfolio with parameters M1 = 1
and k1 = 10−5. The new portfolio is p + a = (a, 100000) and the cash liquidity policy
is L(c), c = 60000 (here we suppose a ≤ c). Then V (p + a), and the value V (p) + a
are shown in Figure 5.5(a). We thus confirm the translationally supervariant property
of the portfolio value map (see Theorem 4.5), from this example. The derivative of
V (p + a) with respect to a,

∂V (p + a)

∂a
=

2
∑N

i=1
Mi

ki∑N
i=1

Mi

ki
− c + p0 + 2a

is depicted in Figure 5.5(b). From Figure 5.5(a), we conclude that a single unit of cash
added in our portfolio can generate more value than one unit to our portfolio. We
also find that the first unit of cash added to the portfolio is the most valuable and the
marginal value of the added cash is decreasing afterwards (see Figure 5.5(b)).
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Figure 5.5: Translational supervariance of the portfolio value map

Example 5.4 (Non-linearity). If we assume that there is only one illiquid asset in
our portfolio characterized by an exponential MSDC with parameters M1 = 1 and
k1 = 10−4, and our liquidity policy is the liquidating-all policy LL, then the value of
the portfolio p = (0, p1) versus the size of p1 is depicted in Figure 5.6. We can find a
nonlinear relation between the portfolio size and the portfolio value.

Merits and shortcomings of exponential MSDCs. The use of the exponential
MSDCs for modeling is easy for calculation and it gives the price a lower bound of 0,
and hence is applicable to securities. For relatively liquid stock exchanges such as the
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Figure 5.6: Portfolio value vs portfolio size under the liquidating-all policy

New York Stock Exchange and the London Stock Exchange, the liquidity risk factor
in the exponential MSDC for the listed stock is usually estimated at the level of 10−8

to 10−7. The result is confirmed by an experiment with real market data and by the
method of least squares (see Section 5.3.1 for information). The exponential MSDC is
a basic model, but may have some deficiencies. For example, the model may work only
for bid prices (i.e., long positions), since it results in a steep slope for the part of ask
prices without an upper bound, while the lower bound for bid prices is 0.

5.1.3 General liquidity policy

We have seen that the cash liquidity policy gives rise to an equality constraint only
(cf. Section 5.1.1). Using the Lagrange multiplier method, one can also generalize the
method to any possible liquidity policy which only gives equality constraints. When
using a liquidity policy which gives both equality and inequality constraints, one can
generalize the method for this kind of optimization problem to a Lagrange duality
problem.

To be specific, we transform the inexplicit convex constraints corresponding to a liquid-
ity policy to some inequalities and equalities: fj(r) ≤ 0 (j = 1, . . . ,m) and hk(r) = 0
(k = 1, . . . , p) where fj(r) and hk(r) are convex functions. Then the convex optimiza-
tion problem is 

min −U(p − r) − L(r)
s.t. fj(r) ≤ 0, j ∈ {1, . . . , m}

hk(r) = 0, k ∈ {1, . . . , p}
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We then introduce an auxiliary function as

G(r,
−→
λ ,−→ν ) = −U(p − r) − L(r) +

m∑
j=1

λjfj(r) +

p∑
k=1

νkhk(r)

We define the Lagrange dual function as

g(
−→
λ ,−→ν ) = inf

r∈P
G(r,

−→
λ ,−→ν )

Then the Lagrange duality problem is{
max g(

−→
λ ,−→ν )

s.t. λj ≥ 0, j ∈ {1, . . . , m}

Sometimes solving the duality problem may be easier than solving the primary problem.
This may improve the efficiency of portfolio valuation. See [6] for more details on
Lagrange duality.

5.2 Ladder MSDCs

In a real market, the MSDC function is typically piecewise constant. We name such a
MSDC a ladder MSDC. Ladder MSDCs have limited depth in the sense that quoted sizes
are finite at a given time . This implies that we cannot liquidate more positions than the
total number of asset units traded in the market in order to calculate the portfolio value.
As such, we need to add additional constraints to the convex optimization problem for
portfolio valuation.

First suppose that we have a portfolio p = (p0, p1, . . . , pN). pmax
i (i = 1, . . . , N) denotes

the maximum trading size for asset Ai in the market at a given time. Our portfolio
p should satisfy pi ≤ pmax

i for i = 1, . . . , N . Hence, the optimization for portfolio
valuation with ladder MSDCs under the cash liquidity policy L(c) is written as

max U(p − r) + L(r)
s.t. L(r) = c − p0

0 ≤ ri ≤ pmax
i , i = 1, . . . , N

We now discuss a way of solving this optimization problem. In particular, we continue
to use the cash liquidity policy. If we have a portfolio with long positions pi > 0
for all i = 1, . . . , N in assets whose MSDC are ladder MSDCs, we can directly solve
the convex optimization problem numerically, for example, by the fmincon function in
Matlab. However, this fmincon function may give us an approximation of the optimal
solution but could be computationally inefficient.
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A calculation scheme for portfolio valuation with ladder MSDCs. We here
propose a fast and accurate calculation scheme to compute the portfolio value under
the cash liquidity policy. The idea is to liquidate the most liquid parts of the portfolio
sequentially until the needed cash is obtained.

Suppose that there are N assets Ai (i = 1, . . . , N), each of which is governed by a
ladder MSDC with a finite number, say Ki (i = 1, . . . , N), of maximum bid sizes
∆sk

i > 0, k = 1, . . . , Ki (and we have
∑Ki

k=1 ∆sk
i = si where si > 0 denotes the number

of contracts traded for asset Ai).

First, we introduce a sensitivity-style function named marginal sensitivity, MSi, with
respect to si units of asset Ai:

MSi(si) :=
mi(0

+) − mi(si)

mi(0+)

The marginal sensitivity is the relative difference between the best bid and the MSDC
corresponding to the number of asset units liquidated, and it thus measures the liquidity
of asset Ai at si units traded. Furthermore, as the MSDC is non-increasing, the marginal
sensitivity is non-decreasing for each asset. As for real data the MSDCs are piecewise
constant, each marginal sensitivity corresponds to a maximum size ∆sk

i . For a security-
type asset, the marginal sensitivity lies in [0,1] as the lower bound for the bid part of
the MSDC is 0.

We now introduce a concept which is the liquidation sequence. We sort marginal sen-
sitivities in an ascending order with their maximum sizes. As the parts of MSDCs
corresponded with the best bids have a zero marginal sensitivity, we first start liqui-
dation from this part of each MSDC to fulfill the cash liquidity policy. This does not
change the portfolio value, which means that an infinite number of optimal solutions
to the convex optimization problem exist. If we need additional cash, we can later
liquidate the second most liquid part of MSDC after liquidating those parts with zero
marginal sensitivity and so forth until the cash requirement is satisfied.

As such, a liquidation sequence shows an effective direction for searching the optimal
solution, we can derive the optimal solution and calculate the portfolio value more
effectively than directly solving the convex optimization problem.

Remark. Although the example we use here concerns a market with limited depth, this
scheme can be extended to the case when the market is unlimited and where the assets
are still characterized by ladder MSDCs.

Example 5.5 (A portfolio with four illiquid assets). Suppose that there are four illiquid
assets. The bid prices with limited maximum sizes at a given time are shown in Table
5.1. We have a portfolio p = (0, 3400, 2400, 3200, 2800). This portfolio contains the
sums of all maximum sizes for each illiquid asset, i.e., pi = pmax

i , i = 1, . . . , 4.
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maximum Size Bids
200 11.65
200 11.55
200 11.45
200 11.1
200 11.05
200 11
200 10.3
500 9.3
500 6.5
1000 6.46

(a) Asset A1

maximum Size Bids
200 19.58
600 19.5
200 19.2
200 19.15
200 19.1
200 18.6
200 18.5
200 16.85
200 16.1
200 16.05

(b) Asset A2

maximum Size Bids
400 29.3
200 29.16
400 29.15
400 28.9
200 28
600 27.8
200 27.15
200 27
400 26
200 22

(c) Asset A3

maximum Size Bids
200 43.1
400 42.65
200 41.9
400 41
200 40.86
200 40.4
200 39
400 37
400 36
200 35.1

(d) Asset A4

Table 5.1: Bids of assets A1-A4

It is easy to calculate the uppermost MtM value U(p) and the liquidation MtM value
L(p) from the tables, that is, U(p) = 3.01042 × 105 and L(p) = 2.73720 × 105. So
the uppermost liquidation cost is C(p) = 0.27322 × 105. If the true portfolio value
is the liquidation MtM value but if we use the uppermost MtM value instead, it will
overestimate our portfolio value by as much as 10%. If we would use the artificial
mid-price for calculation, then the overestimation will be definitely more than 10%.

For different cash requirements, we use the sorted marginal sensitivities (see Table 5.2)
to find the liquidation sequence and then we calculate the portfolio values (see Figure
5.7). We can see that the marginal sensitivity can be as large as 44.5% for the most
illiquid part of the MSDC for asset A1, which indicates a high level of liquidity risk.
We also infer that the portfolio value decreases at a faster rate as we have to liquidate
positions of more illiquid assets to meet the cash requirements, which will definitely
cause more losses during liquidation.
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Figure 5.7: Portfolio value with different cash requirements
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Asset maximum Size Bid Best Bid Marginal Sensitivity
1 200 11.65 11.65 0
2 200 19.58 19.58 0
3 400 29.3 29.3 0
4 200 43.1 43.1 0
2 600 19.5 19.58 0.004085802
3 200 29.16 29.3 0.004778157
3 400 29.15 29.3 0.005119454
1 200 11.55 11.65 0.008583691
4 400 42.65 43.1 0.010440835
3 400 28.9 29.3 0.013651877
1 200 11.45 11.65 0.017167382
2 200 19.2 19.58 0.019407559
2 200 19.15 19.58 0.021961185
2 200 19.1 19.58 0.024514811
4 200 41.9 43.1 0.027842227
3 200 28 29.3 0.044368601
1 200 11.1 11.65 0.0472103
4 400 41 43.1 0.048723898
2 200 18.6 19.58 0.050051073
3 600 27.8 29.3 0.051194539
1 200 11.05 11.65 0.051502146
4 200 40.86 43.1 0.051972158
2 200 18.5 19.58 0.055158325
1 200 11 11.65 0.055793991
4 200 40.4 43.1 0.062645012
3 200 27.15 29.3 0.07337884
3 200 27 29.3 0.078498294
4 200 39 43.1 0.09512761
3 400 26 29.3 0.112627986
1 200 10.3 11.65 0.115879828
2 200 16.85 19.58 0.139427988
4 400 37 43.1 0.141531323
4 400 36 43.1 0.164733179
2 200 16.1 19.58 0.17773238
2 200 16.05 19.58 0.180286006
4 200 35.1 43.1 0.185614849
1 500 9.3 11.65 0.201716738
3 200 22 29.3 0.249146758
1 500 6.5 11.65 0.442060086
1 1000 6.46 11.65 0.445493562

Table 5.2: Liquidation sequence

Merits and shortcomings of the calculation scheme. The calculation scheme
presented above is useful, especially if we hold a portfolio of many assets with large
positions. When solving the original convex optimization problem, most of the time,
the equation constraints are likely to contain a series of piecewise constant functions and
this might increase the difficulty for searching the global optimal solution within the
domain. Instead, with the aforementioned calculation scheme we only need to calculate
the marginal sensitivities with respect to different numbers of asset units traded (as
well as their corresponding maximum trading sizes) as long as we have access to the
bid and ask prices at a given time from real data.

This scheme shows an efficient searching direction to the optimal solution guided by the
liquidation sequence. When using the four-asset example with the cash liquidity policy
above, we use the calculation scheme and the the fmincon function in Matlab to solve
the optimization problem for 2 million times and record the averaged computational
time for each case. The averaged computation time of our calculation scheme is 0.0013
second, the averaged time for the fmincon function is 0.1733 second. We see that the
calculation scheme is more than 100 times faster than the fmincon function in Matlab
and we reach an accurate solution, compared to the local and thus possibly suboptimal
solution obtained by the fmincon function. However, this scheme only works for an
optimization problem with equality constraints, for example, under the cash liquidity
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policy as discussed above. When inequality constraints occur this calculation scheme
may not converge.

5.3 Modeling ladder MSDCs by exponential MS-

DCs

From Section 5.2, we find a fast calculation scheme for portfolio valuation with ladder
MSDCs. However, for general modeling purposes, we may try to use a continuous
MSDC model to approximate the ladder MSDC and then apply the Lagrange multiplier
method to obtain an analytical solution and to improve computational efficiency. As
such, we here propose to use exponential MSDCs from Section 5.1 to model ladder
MSDCs.

5.3.1 Modeling ladder MSDCs

When using exponential MSDCs to approximate ladder MSDCs, the best bids mi(0
+)

can be taken as the market risk factors Mi in the exponential functions. First, we
assume that the liquidity risk factors ki are independent of the market risk factors Mi.
The liquidity risk factors ki are estimated from the ladder MSDCs by the method of
least squares, as follows.

We transform the exponential function mi(s) = Mie
−kis to − log(mi(s)

Mi
) = kis. To

estimate the parameter ki, a list of n discrete pairs (sn,− log(mi(sn)
Mi

)) are observed
given that the market risk factor Mi is estimated beforehand. To obtain an estimate of
ki, the following sum of squares is minimized:

n∑
j=1

(− log(
mi(sj)

Mi

) − kisj)
2

Once we solve this, then the least squares estimate of parameter ki turns out to be

k̂i =
−

∑n
j=1 sj log(

mi(sj)

Mi
)∑n

j=1 s2
j

We focus on the four-asset example with ladder MSDCs from Table 5.1. In Figure 5.8
we show the ladder MSDCs and their corresponding exponential MSDCs as estimated
according to the method of least squares described above. The liquidity risk factors
in the exponential MSDCs turn out to be k1 = 1.9738 × 10−4, k2 = 6.1091 × 10−5,
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Figure 5.8: Comparison of exp MSDCs vs ladder MSDCs for the bid prices of A1-A4

k3 = 4.3015 × 10−5 and k4 = 6.8139 × 10−5. So, we conclude that asset A1 is the most
illiquid and asset A3 is the least illiquid.

In Figure 5.9(a), we compare the approximate portfolio values from the exponential
MSDCs with the accurate portfolio values from the ladder MSDCs under different cash
requirements. The relative difference of portfolio values derived from these two models,
i.e.,

|V
L(c)

ladder(p) − V
L(c)
exp (p)

V
L(c)

ladder(p)
|
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is shown in Figure 5.9(b). Since we find that the relative difference is at most 2.5%, we
conclude that the exponential MSDCs are acceptable for modeling the original ladder
MSDCs.
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Figure 5.9: Modeling ladder MSDCs by exponential MSDCs

When using the exponential MSDCs for general modeling, we need to estimate the
market risk factors Mi and the liquidity risk factors ki from the empirical data or
by some general modeling assumptions. As long as we estimate the parameters in the
model, the exponential MSDCs will definitely speed up the portfolio valuation procedure
in practice.

5.3.2 Modeling error

When using exponential MSDCs to model ladder MSDCs in Section 5.3.1, a natural
question is to what extent the modeling is valid. This involves two issues: (1) where
the modeling error comes from; and (2) when the modeling would fail.

For the first question, as the relative difference represents the error in modeling, we
find that in different modeling cases the relative difference between the estimated ex-
ponential MSDC and the actual ladder MSDC has different shapes. In some cases, the
relative difference is always going up, while in others it may fluctuate. We may need
an indicator or a parameter to explain the modeling error. For the second question, we
suspect that in some extreme cases the exponential function may fail for modeling the
ladder MSDC.
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To validate the model, we construct artificial extreme cases based on the concrete four-
asset example which is used in Section 5.2 and 5.3.1. We modify the last part of the
bid prices for all four assets to be 0.46, 0.05, 0.1 and 0.1, respectively. See Table 5.3.

maximum Size Bids
200 11.65
200 11.55
200 11.45
200 11.1
200 11.05
200 11
200 10.3
500 9.3
500 6.5
1000 0.46

(a) Asset A1

maximum Size Bids
200 19.58
600 19.5
200 19.2
200 19.15
200 19.1
200 18.6
200 18.5
200 16.85
200 16.1
200 0.05

(b) Asset A2

maximum Size Bids
400 29.3
200 29.16
400 29.15
400 28.9
200 28
600 27.8
200 27.15
200 27
400 26
200 0.1

(c) Asset A3

maximum Size Bids
200 43.1
400 42.65
200 41.9
400 41
200 40.86
200 40.4
200 39
400 37
400 36
200 0.1

(d) Asset A4

Table 5.3: Bids of assets A1-A4 (extreme example)

The new exponential MSDCs are shown in Figure 5.10. When we recalculate the
portfolio value based on exponential and ladder MSDCs (see Figure 5.11(a)), we find
that the modeling error is huge (see Figure 5.11(b)). This means that the exponential
MSDC fails in this case.

When analyzing this extreme case, we find that an important factor which determines
the modeling error and the validity of exponential function relates to the huge jumps
occurring in the ladder MSDCs. A huge jump increases the error in modeling. If there is
no huge jump in the ladder MSDCs, the exponential MSDC can be valid for modeling.
Hence, we may need a parameter to identity the jump happened in the ladder MSDC.

To this end, for asset Ai, we define a jump indicator Ii(si), based on the following
marginal sensitivities, as

Ii(si) = MSi(s
+
i ) − MSi(s

−
i ) =

mi(s
−
i ) − mi(s

+
i )

mi(0+)

MSi denotes the marginal sensitivity for asset Ai as defined in Section 5.2. The jump
indicator is always non-negative as the marginal sensitivity is non-decreasing. When
Ii(si) = 0, the ladder MSDC is continuous at point si and hence there is no jump in the
MSDC at the trading volume si. When Ii(si) > 0, the ladder MSDC is non-continuous
at si.

With this jump indicator, we can identify where a jump occurs and measure how large
the jump is. Accordingly, we identify where a large modeling error happens. Moreover,
as the jump indicator is described as a relative value, we can even compare the impact
of jumps occurring in different ladder MSDCs. For the extreme example discussed
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Figure 5.10: Comparison of exp MSDCs vs ladder MSDCs for the bid prices of A1-A4

(extreme example)

above, the jump indicators for asset A1 to A4 are shown in Figure 5.12. We can see
that the largest jump occurs at the end of the ladder MSDC for asset A3. If we use the
exponential function to model the ladder MSDC for asset A3, there will definitely be
large modeling errors around the end of the ladder MSDC.

In addition, the use of the jump indicator can explain (at least partly) the shape of
the relative error in the calculation of portfolio values. To do this, we first calculate
marginal sensitivities for each asset. We then calculate the difference between two
marginal sensitivities for each asset. That is the jump indicator at the margin of one
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Figure 5.11: Modeling of ladder MSDCs (extreme example)

ladder of the MSDC. By sorting the non-zero marginal sensitivities in an ascending order
with those non-zero jump indicators (i.e., the liquidation sequence, see Section 5.2), we
find the impact of modeling error caused by the jump indicators on portfolio valuation
for different liquidation requirements. For example, we can see different shapes of the
modeling error in Figure 5.9(b) and 5.11(b). By sorting non-zero marginal sensitivities
as well as recording corresponding non-zero jump indicators, we get a sequence of jump
indicators (see Table 5.4). From Figure 5.13(a) we can see a rough trend of the jump
indicators. Around the end of the graph we find the jump indicator falls to a relatively
small level, which can partly explain why there is a drop of the modeling error around
the end in Figure 5.9(b). An increasing trend of the jump indicator can be found in
Figure 5.13(b) and this can partly account for the increasing modeling error in Figure
5.11(b) for the portfolio valuation in the extreme example.

We may set a threshold for all jump indicators (say, 0.2). If one jump indicator surpasses
the threshold, this indicates that a huge modeling error will happen when we use the
exponential function to model the ladder MSDC. To improve modeling techniques, we
may use better methods to estimate the liquidity risk factor and the market risk factor
in the exponential function. Alternatively, we should find some sophisticated models
to replace the exponential function in future research.
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(c) Asset A3
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Figure 5.12: Jump indicators for the bid prices of A1-A4 (extreme example)



52 CHAPTER 5. EXAMPLES OF MSDC MODELS

Marginal Sensitivity Jump indicator
0.004085802 0.004085802
0.004778157 0.004778157
0.005119454 0.000341297
0.008583691 0.008583691
0.010440835 0.010440835
0.013651877 0.008532423
0.017167382 0.008583691
0.019407559 0.015321757
0.021961185 0.002553626
0.024514811 0.002553626
0.027842227 0.017401392
0.044368601 0.030716724
0.0472103 0.030042918

0.048723898 0.020881671
0.050051073 0.025536261
0.051194539 0.006825939
0.051502146 0.004291845
0.051972158 0.00324826
0.055158325 0.005107252
0.055793991 0.004291845
0.062645012 0.010672854
0.07337884 0.0221843
0.078498294 0.005119454
0.09512761 0.032482599
0.112627986 0.034129693
0.115879828 0.060085837
0.139427988 0.084269663
0.141531323 0.046403712
0.164733179 0.023201856
0.17773238 0.038304392
0.180286006 0.002553626
0.185614849 0.020881671
0.201716738 0.08583691
0.249146758 0.136518771
0.442060086 0.240343348
0.445493562 0.003433476

(a) Example in Section 5.2

Marginal Sensitivity Jump indicator
0.004085802 0.004085802
0.004778157 0.004778157
0.005119454 0.000341297
0.008583691 0.008583691
0.010440835 0.010440835
0.013651877 0.008532423
0.017167382 0.008583691
0.019407559 0.015321757
0.021961185 0.002553626
0.024514811 0.002553626
0.027842227 0.017401392
0.044368601 0.030716724
0.0472103 0.030042918

0.048723898 0.020881671
0.050051073 0.025536261
0.051194539 0.006825939
0.051502146 0.004291845
0.051972158 0.00324826
0.055158325 0.005107252
0.055793991 0.004291845
0.062645012 0.010672854
0.07337884 0.0221843
0.078498294 0.005119454
0.09512761 0.032482599
0.112627986 0.034129693
0.115879828 0.060085837
0.139427988 0.084269663
0.141531323 0.046403712
0.164733179 0.023201856
0.17773238 0.038304392
0.201716738 0.08583691
0.442060086 0.240343348
0.960515021 0.518454936
0.996587031 0.883959044
0.997446374 0.819713994
0.997679814 0.832946636

(b) Extreme example

Table 5.4: Jump indicator sequences
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Figure 5.13: Impact of jump indicators on modeling portfolio valuation



Chapter 6

Revised Market Risk Measurement

In this chapter, we propose a quantitative definition of market liquidity risk. Conven-
tional risk measures ignore the effect of liquidity risk, which will result in an under-
estimate of risk measures. To include this point, the portfolio risk measure (PRM) is
proposed in Section 6.2. Furthermore, due to the introduction of liquidity risk, the
coherent properties of a coherent risk measure will change to the convex properties for
a so-called coherent portfolio risk measure (CPRM) which is induced by a coherent risk
measure as we shall see in Section 6.2.2.

6.1 Quantification of market liquidity risk

For the purpose of quantifying liquidity risk, researchers mainly focus on the uncertain
and variable costs but exclude the static and known costs, like commission fees and
taxes. We will also follow this approach and concentrate on the uncertain and variable
costs, i.e., the liquidation cost1, when measuring liquidity risk.

From Proposition 4.4, we know that our portfolio value under any liquidity policy is
not higher than the uppermost portfolio value. This implies that if we only use the
uppermost MtM value as the true portfolio value we are likely to overestimate the value
of our portfolio. So, can we quantitatively measure the impact of liquidity risk on our
portfolio?

In Acerbi’s portfolio theory, the uppermost liquidation cost C(p) is considered (see
Definition 4.8). For the purpose of taking into account liquidity risk, we focus on the
liquidation cost.

1An act of exchange of a less liquid asset with a more liquid asset, say cash, is called liquidation.
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Definitions of liquidation cost are given in the literature, using an idea of multi-period
liquidation. These approaches often make use of the mid-price for calculation. For
example, Buhl [7] suggests a definition of liquidation cost under a discrete liquidation
strategy at times t1, . . . , tn as

L(Q) :=
n∑

i=1

∫ qi

0

fi(x)dx · e−r(ti−t1) − Q · V1

with

qi = trading volume at time ti,

fi(qi) = price-volume function at time ti,

r = risk-free interest rate,

V1 = mid-price at time t1,

Q =
n∑

i=1

qi.

For a one-period trade, i.e., n = 1, this reads L(Q) =
∫ Q

0
f1(x)dx − Q · V1.

Another example is proposed by Loebnitz [11], where the liquidation cost2 given a
specific trading strategy k, Lk(Q) is defined as

Lk(Q) :=
n∑

i=1

qi · Ti(qi) · e−r(ti−t1) − Q · V0

with

qi = order size at time ti according to strategy k,

Ti(qi) = transaction price for the order size qi at time ti,

r = risk-free interest rate,

V0 = benchmark price at time zero,

Q =
n∑

i=1

qi.

The one-period trading version is Lk(Q) = Q · T1(Q) − Q · V0.

The benchmark price, V0, in the above formulation can be chosen to be the quoted price
just before the filing of the order. This can be the mid, bid or ask price. One can also

2In [11], the liquidation cost is called a price concession.
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use an estimate as the benchmark price, especially in OTC markets, where a quoted
price is usually not available.

Based on Acerbi’s framework of portfolio theory, we here define the liquidation cost,
LC(p), as the difference between the uppermost MtM portfolio value and the true
portfolio value under some liquidity policy as

LC(p) := U(p) − V L(p).

Compared with the one-period trading versions of Buhl’s and Loebnitz’s definitions of
liquidation cost, our definition has two benefits. First, LC(p) is not only defined under
the liquidating-all policy but varies with different liquidity policies. Second, it includes
the use of the bid or ask price as the market price.

With this definition as a quantification of market liquidity risk, we can evaluate to
which extent liquidity risk influences portfolio value under different liquidity policies.
However, if we want to compare the liquidity of different portfolios, this approach can
only give an absolute impact of liquidity risk and thus fails.

To this end, we define market liquidity risk as a relatively quantity.

Definition 6.1. The market liquidity risk of a portfolio p given a liquidity policy
L, can be mathematically defined as

LR(p) :=| U(p) − V L(p)

U(p)
| .

Market liquidity risk is measured as the relative difference between the uppermost
MtM value and the present MtM value under a given liquidity policy. It measures how
liquidity risk influences the MtM portfolio value. As LR(p) is non-negative, it indicates
to which extent we overvalue our portfolio if we use the uppermost MtM portfolio value
as the true portfolio value. The use of the absolute value in the definition is motivated
by cases where our portfolio may have a negative MtM value.

6.2 Revised risk measures

Let us extend the definition of risk measure. We do not wish to change the rules of
conventional risk measures, but merely introduce a new kind of risk measure which
includes the impact of the liquidity policy.
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6.2.1 Portfolio risk measures

So far we have been tacitly assuming that MSDCs do not change over time. We do
not normally expect this to be the case. If we assume that MSDCs exhibit a stochastic
dynamics, then the value of aportfolio will also vary stochastically. Similar to the
discussion on the definition of risk measure in Section 3.1, we consider a set of random
varibles induced by a given liquidity policy L as XL(p) := {XL

t (p)}t.

XL
t (p) can denote the portfolio value or the P&L of a portfolio under a given liquidity

policy. We give the following definition of a portfolio risk measure:

Definition 6.2. Given a risk measure ρ as defined in Definition 3.1, and a liquidity
policy L, the portfolio risk measure ρL of a portfolio p, is a function mapping
portfolio space P to R

∪
{+∞}, defined by

ρL(p) := ρ(XL
t (p)).

Note that it could happen that XL
t (p) = −∞ , for instance, the portfolio value V L(p) =

−∞. We will extend the portfolio risk measure to be ρL(p) = +∞ in this case.

We can now define the portfolio Value-at-Risk (PVaR) under a liquidity policy L as

PVaRL
α(p) := inf{x|P[XL

t (p) < x] ≤ 1 − α}

and define the portfolio Expected Shortfall (PES) as

PESL
α(p) := E[XL

t (p)|XL
t (p) > PVaRL

α(p)]

6.2.2 Coherent portfolio risk measures

If we analyze the properties of coherent risk measure, we find some inconsistencies in
an illiquid world. For example, if we double the size of our portfolio which is invested
in some illiquid assets, this could increase the liquidity risk of our portfolio, and thus
should increase the value of risk measure more than doubled, which contradicts the
positive homogeneity of coherent risk measure.

We then propose a coherent portfolio risk measure (CPRM)3 if a coherent risk measure
(CRM) and a liquidity policy are given (cf. Section 6.2). The defining properties of a
coherent risk measure change to the following properties of a CPRM.

3However, we may as well call this risk measure a convex portfolio risk measure as it follows the
convex properties. However, this risk measure is induced by a coherent risk measure. Here we just
follow Acerbi’s terminology.
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Theorem 6.1. Let L be any liquidity policy and ρL be any CPRM based on the set
of portfolio values at a given time, {V L}. Then, we have the following properties of a
CPRM:

1. Monotonicity: for all p, q ∈ P with V L(p) ≥ V L(q), we have ρL(p) ≤ ρL(q).

2. Translational subvariance: for all p ∈ P and e ≥ 0, we have ρL(p+e) ≤ ρL(p)−e.

3. Convexity: for all p, q ∈ P and θ ∈ [0, 1], we have ρL(θp + (1 − θ)q) ≤ θρL(p) +
(1 − θ)ρL(q).

Proof. Monotonicity can be easily proved by the monotonicity of CRM.

Translational subvariance:

ρL(p + e)

=ρ(V L(p + e))

≤ρ(V L(p) + e) (by Theorem 4.5 and monotonicity of CRM)

=ρ(V L(p)) − e (by translational invariance of CRM)

=ρL(p) − e

Convexity:

ρL(θp + (1 − θ)q)

=ρ(V L(θp + (1 − θ)q))

≤ρ(θV L(p) + (1 − θ)V L(q)) (by Theorem 4.5 and monotonicity of CRM)

≤ρ(θV L(p)) + ρ((1 − θ)V L(q)) (by subadditivity of CRM)

=θρ(V L(p)) + (1 − θ)ρ(V L(q)) (by positive homogeneity of CRM)

=θρL(p) + (1 − θ)ρL(q)

We can see that the coherent properties of the coherent risk measure change to convex
properties for the coherent portfolio risk measure under any liquidity policy. These
properties are independent of the chosen liquidity policy. Property 1 confirms that the
monotonicity is not changed for CPRM. Property 2 indicates that adding more cash
to a portfolio should increase the portfolio value and thus decrease the risk measure
of the portfolio. Property 3 combines positive homogeneity and subadditivity of the
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coherent risk measure into a weaker property, i.e., convexity, which however also follows
the principle of risk diversification.

If we also consider the liquidity policy as a function variable for the portfolio risk
measure, we will have some specific properties of the risk measures relating to the use
of different liquidity policies.

Proposition 6.2. Let p, q ∈ P.

• Let ρL denote the CPRM under the liquidating-all policy LL. Then

ρL(λp) ≥ λρL(p), if λ ≥ 1

• Let ρU denote the CPRM under the liquidating-nothing policy LU . Then we have
the following properties:

1. Positive homogeneity, i.e., ρU(λp) = λρU(p), if λ ≥ 0.

2. Subadditivity, i.e., ρU(p + q) ≤ ρU(p) + ρU(q).

3. Translational invariance, i.e., ρU(p + α) = ρU(p) − α, if α ∈ R.

• Let ρ(c) denote the CPRM under the cash liquidity policy L(c). Then we have the
following properties:

1. ρ(c)(λp) ≤ λρ(c)(λp) ≤ ρ(λc)(λp), if λ ≥ 1, p0 ≥ 0.

2. Subadditivity if at least one portfolio has positive cash, i.e.,

ρ(c)(p + q) ≤ ρ(c)(p) + ρ(c)(q), if p0 ≥ 0.

As for the liquidating-all policy, if a portfolio is twice the size of another portfolio, its
CPRM will be more than twice the value of the other. As for the liquidating-nothing
policy, all properties match those of a coherent risk measure as the constraint of the
liquidating-nothing policy just replaces the mid-price in the conventional coherent risk
measure by the best bid price and this does not change the rules of coherency. As for
the cash liquidity policy, the subadditivity holds when at least one portfolio has positive
cash.

When comparing the CPRMs under different liquidity policies for a same portfolio, we
have the following result:

Proposition 6.3. Let p ∈ P. If L1 is less restrictive than L2, then ρL1(p) ≤ ρL2(p).
Furthermore, for any liquidity policy L, we have ρU(p) ≤ ρL(p).

Proof. By Proposition 4.4 and the monotonic property of the conventional coherent risk
measure, a proof is easily obtained.
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This proposition gives a lower bound of a CPRM. The liquidating-nothing policy LU

corresponds to no liquidity risk by Definition 6.1, and thus it leads to the lowest risk
measure compared to all other liquidity polices.

6.3 Examples

We present some examples to obtain insight in the risk measures mentioned in Sections
6.1 and 6.2. We assume that there is one illiquid asset in our portfolio, the MSDC of
which is an exponential function as discussed in Section 5.1. We furthermore assume
that the best bid price follows a Geometric Brownian Motion model as dMt = rMtdt+
σMtdWt, with M0 = 1, r = 0.03, σ = 0.2. Using this model, we generate best bid prices
for 500 trading days. We assume that the liquidity risk factor in the exponential MSDC
follows a normal distribution, independent of the market risk factor. In the examples
to follow, we choose two portfolios p = (0, 10000) and q = (0, 20000). We then use
the daily portfolio Expected Shortfall (PES) with a confidence level of 95% defined
on the set of portfolios, as an example of the CPRM. We use historical simulation by
evaluating the 250 most recent daily trading data for the calculation of risk measures.
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Figure 6.1: Market liquidity risk and market risk measures

Example 6.1 (Market liquidity risk and market risk measures). We set our liquid-
ity policy here to be the liquidating-all policy and calculate market liquidity risk by
LR(p) = |U(p)−L(p)

U(p)
| (cf. Definition 6.1). From Figure 6.1(a), we see that our portfolio

is overvalued by at most 1.7%, in the worst case, when liquidity risk is neglected.
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Due to the inclusion of market liquidity risk, we expect market risk measures to increase
compared to conventional risk measures. We compare VaR and ES with the new PVaR
and PES under the liquidating-all policy. We calculate the conventional VaR and
ES defined on the portfolio value only, and we use the best bid prices for calculation,
rather than the mid-prices. We can see that VaR95%(p) ≤ PVaRL

95%(p) and ES95%(p) ≤
PESL

95%(p) from Figure 6.1(b). We also note that the new PVaR could even surpass
the conventional ES due to the addition of liquidity risk.

Example 6.2 (General properties of CPRM). First we set the liquidity policy to be
the liquidating-all policy. Figure 6.2(a) shows that 1

2
PESL

95%(p)+ 1
2
PESL

95%(q) is greater

than PESL
95%(1

2
p + 1

2
q), which confirms the convexity of the CPRM. We also calculate

the CPRM with the cash liquidity policy to confirm the translational subvariance. We
set our cash needed to be 40000 and the cash added to the portfolio p to be 12000.
Figure 6.2(b) shows the translational subvariance as PESL

95%(p + e) ≤ PESL
95%(p)− e.
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Chapter 7

Conclusions and Questions

7.1 Conclusions

The main aim of the thesis is to formulate a concept of liquidity risk and to incorporate
market risk measurement with liquidity risk for improvement. To this end, we first
review two types of liquidity risk and the relation between liquidity risk and market
risk. The thesis is based on a new framework of portfolio theory introduced by Acerbi.
According to this formulation, the liquidity of the assets consisting a portfolio is built
into the value of that portfolio via a so-called liquidity policy. Under the new frame-
work, the valuation of a portfolio becomes a convex optimization problem. As our
own contribution, some examples of calculation schemes for the convex optimization
problem are given (see Chapter 5). Equipped with the new portfolio theory, we can
quantify market liquidity risk and introduce a new kind of risk measure which includes
the impact of liquidity risk.

However, this will not be the end of the work. We find the new framework of portfolio
theory and the quantification of liquidity risk need to be bettered by more effort.

7.2 Possible questions for future study

In what follows, we raise some further questions we are faced with in the study of
liquidity risk. Here we just list a few ideas for future study.
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7.2.1 Modeling of liquidity risk factor in exponential MSDC

From Chapter 5, we can see that the exponential MSDC, m(s) = Me−ks, appears a
good model in practice. The market risk factor M can be the best bid if we hold long
positions. The dynamics of M can be modeled in a way similar to the dynamics for
mid-price models (e.g., GBM model). The remaining work is to model the liquidity risk
factor k in the exponential MSDC.

We assume that the liquidity risk factor k in the exponential MSDC is independent of
the market risk factor M . We treat the liquidity risk factor as a collection of random
variables over time, i.e., as a time series {kt}t. If there exist a linear relationship between
kt and information available prior to time t, then linear time series models such as
the autoregressive (AR) model can be applied to capture the linear relationship. For
example, we assume that the time series of liquidity risk factor kt follows the AR(p)
model as

kt = φ0 +

p∑
i=1

φikt−i + εt

where φ0, . . . , φp are the parameters of the model and {εt}t is white noise.

As an example, we here use the AR(1) model to forecast liquidity risk factor in expo-
nential MSDC at the closing time for the stock of Royal Dutch Shell. (Data come from
Euronext.) We first use a dataset to approximate parameters φ0 and φ1 by the method

of least squares to get φ̂0 and φ̂1. The one-step forecast k̃t+1(1) given kt is given as

k̃t+1(1) = E[kt+1|kt] = φ̂0 + φ̂1kt
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Figure 7.1: Estimated liquidity risk
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In Figure 7.1 we compare the estimated liquidity risk factor with the real one for
consecutive 9 trading days.

The AR(1) model may not capture all information prior to time t and the error is
large. There are two ways to remedy this: using more empirical data, or using other
models for approximation. We refer to [18] for details on financial time series models.
Alternatively, we can use some stochastic processes to model liquidity risk. However,
all these models need support from empirical data for validation.

If we assume that the liquidity risk factors are correlated with market risk factors, then
a question is how to model the correlation between k and M . We provide an idea of how
this might be done. We first sample from empirical data to estimate a series of liquidity
risk factor independent of market risk factor. Then we use the series of estimates, {k̂j}
and {M̂ j}, to estimate the correlation as

ρ̂(k, M) =

∑N
j=1(k̂

j − µk)(M̂
j − µM)√∑N

j=1(k̂
j − µk)2

∑N
j=1(M̂

j − µM)2

where µk = 1
N

∑N
j=1 k̂j and µM = 1

N

∑N
j=1 M̂ j. Then we use the correlation to modify

the independent samples k̂j to be a new estimate which is correlated with M . We
estimate the correlation again and modify the estimated liquidity risk factor, and so
on, until certain conditions are satisfied.

7.2.2 Multi-period liquidation

One possible deficiency of Acerbi’s formulation of portfolio value is that it may not
be reasonable to liquidate all your positions immediately as we are possibly faced with
huge losses to do this. Hence, the question arises how to define the portfolio value based
on a multi-period liquidation.

We first assume that part of our portfolio qk is to be liquidated at time tk (k = 1, . . . , n).
Then we add up the present uppermost MtM value of the part which is not to be
liquidated and the present MtM liquidation values for qk. The portfolio value at time
t0 could be defined as

Vt0(p) = Ut0(p −
n∑

k=1

qk) +
n∑

k=1

e−r(tk−t0)Ltk(q
k)

where r is the interest rate which is used to discount the future value to the present
value.

In this definition of portfolio value, the formula no longer corresponds to an optimization
problem. Furthermore, there are only two liquidity policies applied, i.e., the liquidating-
all policy and the liquidating-nothing policy. Although quite unlike Acerbi’s original
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formulation, this multi-period formula is similar to the ideas of multi-period liquidation
proposed by Buhl [7] and Loebnitz [11], respectively, as discussed in Section 6.1. A
natural question is: can we find an optimal liquidation scheme to minimize liquidation
cost?

7.2.3 Difficulties in OTC markets

The price information in OTC markets is difficult to obtain. Hence, the assumption
that all bid and ask prices can be found in the market at a given time may not hold
for OTC assets. This is a serious issue, as a crucial element in Acerbi’s framework is
the MSDC. When prices cannot be quoted, MSDCs cannot be constructed and hence
applications of the framework fail.

We hope that from the lessons of the present subprime crisis, more transparent infor-
mation on the OTC assets could be revealed. However, the difficulty in discovering
price information in OTC markets is yet a challenge for all researchers to study.
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