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Abstract

Asset liquidity in modern financial markets is a key but elusive concept. A market

is often said to be liquid when the prevailing structure of transactions provides a

prompt and secure link between the demand and supply of assets, thus delivering

low costs of transaction. Providing a rigorous and empirically relevant definition of

market liquidity has, however, provided to be a difficult task. This paper provides a

critical review of the frameworks currently available for modelling and estimating the

market liquidity of assets. We consider definitions that stress the role of the bid-ask

spread and the estimation of its components that arise from alternative sources of

market friction. In this case, intra-daily measures of liquidity appear relevant for

capturing the core features of a market, and for their ability to describe the arrival of

new information to market participants.
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1 Introduction

The scope of this paper is to present an exhaustive discussion on the various measures for

asset liquidity proposed in the literature on market microstructure. Given the large number

of liquidity measures and methodologies employed both by practitioners and academic

researchers, this paper reviews the role of each liquidity measure by looking at the logic

behind their construction, and how they relate to each other.

Liquidity is often pointed at as a key concept in financial markets. It is a very elusive

one though. In general terms, the concept of liquidity often denotes a desirable function

that should reflect a well organized financial market. A market is often said to be liquid

when the prevailing structure of transactions provides a prompt and secure link between the

demand and supply of assets, thus delivering low transaction costs. Providing a rigorous

definition of market liquidity has, however, proven to be a cumbersome task.

Differently from a widely-quoted contribution of Baker (1992), this paper considers

definitions of market liquidity that emphasize the role of the bid-ask spread and the

estimation of its components. The difference between bid and ask quotes for an asset

provides a liquidity measure applicable to a dealer market, rather than a broker market.

Despite this, it is possible to compute approximations that mimic the difference between

bid and ask quotes even in broker markets. Hence, the role of intradaily measures of

liquidity can capture the core features of a market, such as the arrival of new information

to the trading parties.

The first major task of any study on liquidity consists in providing an exhaustive

definition. Laying down this concept properly involves the specification of two additional

concepts, namely the the transaction time - i.e. the speed of executing transactions - and

the pure transaction costs - i.e. the price paid by investors for the liquidity services.

The time of transaction is related to the demand pressure generated by the public.

This takes the form of a request for a quick execution of the order placed in the market.

At the same time, an order request involves the opportunity for the investor to buy or sell

an asset at the prevailing price, or at a price close to the one prevailing in the market.

These intuitive considerations lay down the ground for a relevant concept of liquidity.

In other words, an asset is liquid if it can be quickly exchanged at a minimal cost. A similar

definition can be applied also to an asset market as a whole. In this sense, a market is

liquid if it is possible to buy and sell assets at a minimal cost without too much delay from

order placement.

Another important aspect concerns the extent to which asset prices are affected by

the trading activity. In a liquid market, price variations should not to be determined by

transaction costs. In other words, block size transactions should have a minimal impact on

prices. Prices usually change both in anticipation and in response to order flows. Hence,

it becomes crucial to understand the extent to which the amount of transactions or order

size can determine large swings. In a thin market, prices are highly responsive to trade
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size. In a liquid or deep market instead, prices can be affected by order flows only to a

minor extent.

Insofar as thera are different concepts of asset liquidity, different measures of liquidity

focus on alternative aspects of the measurement problem. Some measures concentrate

on the role of the volume size. Other indices are related to the execution-cost aspect

of liquidity. The indices based on volume information are related to the price impact

of transactions. When properly aggregated, they provide also synthetic measures of the

liquidity present in an entire market. On the other hand, the indices based on execution

costs are meant to evaluate the properties of an asset by looking at the cost paid to

the market maker (dealer or specialist) for matching the demand and the supply. These

analyses are generally based on the bid-ask spread and its variations. In fact, when a dealer

or a specialist revises the bid-ask quotes, a careful study of bid-ask spread components can

reveal information on the sources of illiquidity.

The literature identifies three main component of the bid-ask spread. These arise from

order processing, adverse information and inventory costs. A high level of competition

between intermediaries allows for a reduction of the order processing component and

improves the liquidity condition of the market. The informational component of the bid-ask

spread sheds light on the degree of efficiency due to the presence of hidden information or

insider trading.1

The content of the paper is organized as follows. Section 2 discusses the various concepts

of liquidity with a view on their implications for asset pricing. Section 3 reviews the

measures of liquidity based on information from traded volumes. Section 4 considers the

indices computed from asset prices. Section 5 focuses on the role of transaction costs as a

source of asset illiquidity.

2 Why is market liquidity important?

The relevance of market liquidity arises from its connection with the institutional

organization of a market. Both aspects tend to influence each other and produce effects

on the efficiency of market transactions, as documented by Amihud and Mendelson (1988,

1991).

As a starting point, let us consider the characteristics of a liquid market. According to

Baker (1996), we can identify three main properties:

1. Depth: a market is deep when there are orders both above and below the trading

price of an asset.

2. Breadth: a market is broad when there is a large volume of buying and selling orders.

The spread is large when the order flow is scarce.

1These considerations suggest that a careful analysis of liquidity is a crucial step towards the design of
a proper regulatory activity for both exchanging parties and the intermediaries.
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3. Resiliency: a market is resilient if there are many orders in response to price changes.

There is a lack of resiliency when the order flow does not adjust quickly in response

to price swings.

All these aspects play a crucial role in the evaluation of the structure of a financial market.

In fact, the availability of liquidity has important consequences both on the prices of assets,

and on the degree of competition between market actors.

Abstract properties may not allow to provide an operational definition of liquidity

which can be confronted with the data. Different sources provide definitions of liquidity

that are not fully satisfactory because they stress a specific aspects different from one

another. According to John Maynard Keynes, an asset is liquid if

"it is more certainly realizable at short notice without loss."

This quotation highlights two aspects, namely the riskiness of the realizationof an asset

value, and the presence of a marketplace where negotiations can take place without adverse

price oscillations.

Subsequent contributions have pointed out the role of speed and the costs associated

to market exchanges. For example, Massimb and Phelps (1994) focus on the importance

of immediacy. Liquidity can be defined as the

"market ability to provide immediate execution for an incoming market order

(often called "immediacy") and the ability to execute small market orders

without large changes in the market price(often called "market depth" of

"resiliency")."

The core point of the concept of liquidity is the possibility to exchange a given asset

in the market without dramatic changes in the prevailing market price. Sensible empirical

implementations of this idea are hard to construct because the ‘true’ degree of liquidity is

unobservable. In particular, this is well represented by the difference between the observed

transaction price and the price that would occurred in complete absence of transaction

costs.

2.1 A selected discussion on asset-pricing implications

As stressed in a long series of papers, market liquidity has important asset pricing

implications.2 The rate of return on a given asset should include the compensation to

investors for potential losses arising from transaction costs. The presence of a liquidity

cost of one percent affects an asset price by more than one percent because of the repeated

trades. Thus, with higher transaction costs, the market will experience lower asset prices

2For instance, see the contributions of Amihud and Mandelson (1980, 1987); Amihud and Mendelson
(1991).
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and higher rates of return. An illiquid asset will offer a higher rate of return in order to

compensate the investor for bearing liquidity cost at any different date.

This proposition can be understood in the following way. The present discounted value

of transaction costs of a liquid asset traded frequently is higher than the one of a less liquid

asset, which is thus traded less frequently. Thus, the return of the more liquid asset will be

higher than the return on the less liquid, because of the distorting effect due to transaction

costs.

All these considerations should represent a concern relevant for the analyses carried out

by portfolio managers. Amihud and Mandelson (1986b, 1987); Amihud and Mendelson

(1988, 1991) propose a model to evaluate the asset pricing implications of market liquidity.

This is based on the assumption that asset returns are an increasing and concave function

of the spread. The idea behind this framework can be thought of as a ’clientele effect’.

This is the tendency of investors with longer holding periods to select assets with higher

spreads, so that expected returns net of trading costs increase with the holding period. In

this case, higher spreads due to the presence of higher transaction costs will yield higher net

returns. As a result, an investor with a long intertemporal horizon will gain by investing

in assets characterized by higher spreads.

The prediction offered by the model by Amihud and Mandelson (1986b) can be tested

by estimating the following regression for a portfolio j of assets:

Rt (j) = c+ αβt (j) + γ log St (j) (1)

In the original framework, Rt (j) denotes the average monthly rate of return on a stock

included in the portfolio j in excess of the 90-day return on Treasury bonds, βt (j) is the

beta coefficient for portfolio j, while St (j) is the average bid-ask spread.

The empirical analysis based on estimates for 1 show a high level of significance for

all the arguments of regression. In particular, Amihud and Mendelson (1988, 1991) show

that average portfolio returns increase with the spread, and the spread effect persists if

firm size is included in equation 1 as an additional regressor.

The importance of liquidity for portfolio management is also documented by the role

of technical analysis as indicator for price pressure. The academic profession tends to

consider technical analysis as partly irrelevant for asset pricing. However, typical technical

analysis indicators such as the traded volume can turn out extremely useful. As shown

by Blume, Easley and O’Hara (1994), information on traded volumes provides important

insights that are usually not conveyed by simple price statistics.3

Other authors have documented several anomalies or puzzles that link volume or

trade indicators to liquidity. For example, a relationship between returns and volume is

documented in the literature on weekends effects, started by French and Roll (1986), and

3The influence of volume on returns is also analyzed both empirically and theoretically by Campbell,
Grossman and Wang (1993).

5



in the contributions on intra-day patterns described by McInish and Wood (1992). Joint

indicators of liquidity and volume are also often employed in the pricing of infrequently

traded stocks (e.g., see Blume, Easley and O’Hara, 1994).

Overall, this strand of research suggests that information is an important pricing factors

in asset markets. Information is often reflected in the frequency of transactions and, as

such, in market liquidity. We should stress that these aspects concern the demand side of

a market, namely the pricing pressure determined by purchasing activity. The remainder

of the paper focuses on liquidity as a supply-side factor.

3 Volume-based liquidity measures

In this section we present the liquidity indices proposed in the early stages of the market

microstructure literature. Their emphasis is on the relationship between price and quantity

of an asset. These measures evaluate the degree of price impact of a transaction of a specific

size.

3.1 Trading volume

A rough measure of liquidity is represented by the traded volume. This consists in the

amount exhanged between market actors in buying and selling activities for a single

asset or for the market as a whole. Some researchers consider trading volume as an

inappropriate liquidity index, though. The reason lies in the issue of double counting

involved. A transaction on the buy side can be also recorded as transaction on the seller

side. A more suitable measure is provided by the ratio between trading volume and market

capitalization.

According to recent contributions, the trading volume of an asset is one of the key

determinant for the whole pricing structure. For example, Blume, Easley and O’Hara

(1994) show that the volume traded generates information that cannot be extracted from

alternative statistics. Because of widespread availability of data, trade volume represents

a sort of a preliminary step towards a more complete analysis of market liquidity.

3.2 The conventional liquidity ratio

The liquidity ratio, also called ‘conventional liquidity ratio’, is probably one of the liquidity

measures most frequently applied in the empirical analysis. This index provides a measure

for how much traded volume is necessary to induce a price change of one percent. Volumes

and prices are the key ingredients. The analytical expression of the liquidity ratio for asset
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i is:

LRit =

T∑
t=1

PitVit

T∑
t=1

|PCit|

(2)

where Pit is the price of asset i on day t, Vit denotes the volume traded, and |PCit| is the

absolute percentage price change over a fixed time interval, given by PCit = Pit − Pit−1.

The liquidity ratio is usually computed for a number of assets and is aggregated over

a pool with similar characteristics. The time interval (T, t) adopted to compute the index

is typically chosen arbitrarily. However, the index is often calculated over a monthly

time scale, so that the numerator denotes the total volume of the traded assets over the

previous four weeks. Instead, the numerator is the absolute value of the daily percentage

price changes of the stock over the last four weeks. The higher the ratio LRit is, the higher

the liquidity of asset i will be. This means that large volumes of trades have little influence

on price. Obviously, this conceptual framework focuses more on the price aspect than on

the issue of time or on the execution costs typically present in a market.

3.3 The index of Martin (1975)

Martin (1975) proposes a liquidity index where a stationary distribution of price changes

is assumed to hold through the entire transaction time. The analytical expression for the

index takes the form:

MLIt =
N∑

i=1

(Pit − Pit−1)
2

Vit
(3)

where Pit is the closing price and Vit denotes the traded volume. The reader should

otice that the index is computed over the total number of asset for the market. MLIt is

considered as a suitable index for the market as a whole, while the liquidity ratio is best

suited for a single asset.

A higher value for MLIt implies less liquidity because of the influence of price

dispersion. Another interpretation of the index is the following. The higher the ratio,

the higher the price dispersion relative to the traded volume, and the lower is the liquidity

of the market. In fact, prices appear to be uncorrected with trading volume. As such, they

may reflect only changes of information or events not necessarily related with the trading

process.

For its characteristics, Martin’s (1975) liquidity index produces meaningful results if

computed on a daily basis. To obtain sensible outcomes for longer time horizons, one needs

to compute a weighted average of several indices derived for shorter time intervals.
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3.4 The liquidity ratio of Hui and Heubel (1984)

Hui and Heubel (1984) introduce an additional index that measures the liquidity of a single

asset. As such, it cannot be directly employed for the market as a whole without using

appropriate aggregation techniques. In practice, this index constructs a metric between

the largest price change divided by the ratio of traded volume to market capitalization.

In what follows, we drop the superscipt i from the formula for reasons of notational

convenience. The mathematical expression of the index is:

LRHH =
(Pmax − Pmin) /Pmin

V/
(
S · P

) (4)

where Pmax is the highest daily price over a 5-day period, Pmin is the lowest daily price

over the same horizon, V is the total volume of assets traded over a 5-day period, S is

the total number of assets outstanding and P denotes the average closing price. A higher

value for the index LRHH implies lower liquidity.

A quick inspection of equation (4) reveals that the logic behind the construction of this

index is not very different from that underlying MLIt. In fact, the denominator of (4)

is the traded volume adjusted for market capitalization and the numerator indicates the

widest percentage price change over a 5-day horizon.

According to the existing literature, the ratio proposed by Hui and Heubel (1984)

suffers at least of two shortcomings. First, the time period consisting of 5 days is arguably

too long for the index to detect market anomalies, given the fact that asset prices can

quickly adjust to liquidity problems. The second critical point is related to the choice

of variables. For instance, if we focus on stocks quoted in a dealer market, such as the

NASDAQ, high-quality price data may not be readily available. In this case, it is possible

to replace Pmax and Pmin with the bid-ask spread. However, this represents a problematic

approach because the bid-ask spread quotes are often less volatile than prices. Hence, the

use of bid-ask quotes may bias downward the analysis of liquidity. This issue motives the

adoption of an alternative liquidity measure.4

3.5 The turnover ratio

The turnover ratio TRi
t for an i at time t is usually defined as follows:

TRi
t =

Shit
NShit

(5)

where Shit is the number of asset units traded at time t for stock i, and NShit is the total

number of asset units outstanding. The index proposed in (5) is computedfor a single time

4To deal with so-called ‘company ratio problem’, Hui and Heubel (1984) normalize the liquidity ratio
by the value of outstanding shares.
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period, which could be a day or a month. Often it is used to compute an average over a

prespecified sample period as:

TRi
T =

1

NT

NT∑

t=1

TRi
t (6)

with a number of sub-periods NT . Thus, in this expression, we compute the mean of the

turnover ratio over a defined sample period.

The indices outlined earlier can be included into parametric models for asset prices. For

instance, we can consider a regression of asset returns to test for the statistical significance

of various liquidity measures. According toAmihud and Mandelson (1986b), turnover is

negatively related to the illiquidity costs of stocks.

Datar, Naik and Radcliffe (1998) propose a test for the role of liquidity that is different

from the one proposed by Amihud and Mandelson (1986b). In particular, they use the

turnover rate as a proxy for liquidity. This test can be widely employed because of its

simplicity and data availability. From Amihud and Mandelson (1986b), in equilibrium,

liquidity is correlated with trading frequency. Therefore, by directly observing the turnover

rate, it is possible to obtain the latter as a proxy for liquidity. Datar, Naik and Radcliffe

(1998) perform the following regression in cross sectional data:

Ri
t = k0 + k1TR

i
t + k2b

i
t + k3lsize

i
t−1 + k4β

i
t + et

where Ri
t is the return of stock i at month t, TRi

t is the turnover ratio at month t, bit is the

book to market ratio expressed as the natural logarithm of book value to market value for

each individual firm, lsizeit is the natural logarithm of total market capitalization of firm

i at the end of the prior month. Finally, βit is the coefficient for the i-th stock computed

for stocks belonging to a portfolio of homogeneous stocks and et are the residuals from the

estimation of the above equation. The results suggest that stock returns are a decreasing

function of the turnover rates. This relation is robust after controlling for bit, lsize
i
t−1, and

βit .

3.6 The market-adjusted liquidity index

Hui and Heubel (1984) propose a measure for liquidity that takes into account the

systematic sources for risk. The construction of the market index involves two steps. In

the first step, a market model for the asset return is estimated to control for the effects of

average market conditions on price changes. For stock prices, this stage typically consists

in estimating the following equation:

Rit = α+ βRmt + εit (7)
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where Rit is the daily return on the i-th stock, Rmt is the daily market return on the

aggregate stock market index, α is a constant, β measures the systematic risk, and εit

denotes a measure of idiosyncratic risk.

The motivation for using this model relies on the idea that part of the stock’s specific

risk reflects the liquidity in the market. Thus, more liquid stocks display smaller random

price fluctuations, and tend to perform as the market model would suggest. In other words,

larger price dispersion is a characteristics of stocks with low liquidity that deviate from

the market model.

The second step in the construction of the index consists in the definition of a model

for idiosyncratic risk. This can be formalized as:

ε2it = φ0 + φ1∆Vit + ηit (8)

where ε2it are the squared residuals from equation (7), ∆Vit is the daily percentage change

in dollar volume traded, ηit is an i.i.d. residual with zero mean and constant variance.

The market-adjusted liquidity ratio is identified as the coefficient φ1 in equation (8).

A small value of φ1 indicates that prices change little in response to variations in volume.

This measure takes into account the price effect arising from changes in liquidity conditions,

which are mimicked by the change in trading volume. A liquid stock is characterized by a

low exposure to liquidity risk which is, in turn, measured by a low φ1.

This liquidity measure provides sensisble results on the assumption that asset prices

behave according to the market model. However, if deviations from the market model

are due to swings in volume, there is an identification problem. Despite this issue, the

market-adjusted liquidity index provides for a simple way to test for liquidity effects. In

the current literature, there is a widespread application of this index to both dealer and

auction market.

3.7 An explicit illiquidity measure

The role of traded volume is central in the liquidity measures proposed in the recent years.

An interesting index of illiquidity is introduced by Amihud (2002):

ILLIQi
T =

1

DT

DT∑

t=1

∣∣∣Ri
t,T

∣∣∣
V i
t,T

(9)

where DT is the number of days for which data are available, Ri
t,T is the return on day t of

year T, and V i
t,T is the daily volume. The day-t impact on the price of one currency unit

of volume traded is given by the ratio
|Ri

t,T |
V i
t,T

. The illiquidity measure (9) is the average of

the daily impacts over a given sample period.

This index is very close to the liquidity ratio. The latter provides an understanding
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of the link between volume and price change. The illiquidity index provides only a rough

measure of the price impact. Differently from the bid-ask spread, the main advantage of

this index relies on the wide availability of data for its computaiton, especially for those

markets that do not report sophisticated measures of the spread.

Amihud (2002) has introduced the illiquidity index to investigate the influence of market

conditions on stock returns. His framework introduces a cross-sectional test by selecting a

sample of stocks quoted on the NYSE. The testing model takes the form

Ri
m,T = λ0 + λ1ILLIQMAi

m,T−1 + λ2ATR
i
m,T−1 + λ3v

i
m,T−1 + λ4p

i
m,T−1 + λ5c

i
m,T−1 +

λ6dyT−1 + λ7R
i
100 + λ8R

i
T−1 + λ9σR

i
T−1 + λ10β

i
T−1 + uit (10)

The stock return Ri
m,T in month m for year T is regressed over several variables,

including a constant λ0, the mean adjusted illiquidity measure at the end of year T-1,

ILLIQMAi
m,T−1

, the mean adjusted turnover ratio ATRi
m,T−1

, the log of traded volume,

vim,T−1
, the log of stock price pim,T−1

, the log of capitalization cim,T−1
, the dividend yield

dyT−1, computed as the sum of the annual cash dividends divided by the end-of-year price.

Moreover, Ri
100 and Ri

T−1
are the cumulative stock returns over the last 100 days and the

entire year, respectively, σRi
T−1

is the standard deviation of the stock daily return during

year T-1, and βiT−1
is the beta of stock i computed for portfolios of stocks of homogeneous

size.

The mean-adjusted illiquidity measure takes the form:

ILLIQMAi
m,T =

ILLIQi
m,T

AILLIQm,T

where AILLIQm,T is the cross-stock average illiquidity for the stocks included in the

regression model. In general, the annual average illiquidity across stocks is defined as:

AILLIQT =
1

NT

NT∑

i=1

ILLIQi
T

where NT is the number of stocks in year T . The variable ATRi
m,T is computed in the

same way. This transformation allows to take into account the time-series variability in

the estimated coefficients, which can arise from high volatility associated to illiquidity.

The empirical results show that the illiquidity measure is statistically significant for

NYSE stocks during the period 1964-1997. The coefficient of the illiquidity measure on

stock returns has a positive sign. Stock turnover, instead, delivers a negative coefficient.

The estimated parameters on illiquidity and the turnover can provide a joint measure of

liquidity. These results stress the importance of liquidity for stock returns. Moreover, if

stock returns are computed in excess of the Treasury bill rate, the model results show that

the compensation for expected market illiquidity is still sizeable.
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3.8 General comments on volume-based measures

We can point out at least three issues arising from the use of liquidity indices based on

volume.

First of all, these indices fail to distinguish between transitory and persistent price effect

of swings in traded volume. A transitory effect can often be explained as a temporary lack

of liquidity in the market, or arise from the pure transaction cost component. A permanent

price effect is a price change due to the presence of informational effects because of better

informed traders. This permanent effect is related to changes in the fundamental value of

assets anticipated by part of the market because of inside information.

The distinction between transitory and permanent price effects can also be thought

of as a problem similar to the decomposition of a time series into a stationary and a

random-walk component, as studied by Beveridge and Nelson (1981). The dichotomy

between permanent and non-permanent effects can be identified from pricing errors. These

consist in the difference between the ‘efficient’ unobserved price and the actual transaction

price.

A pricing error can be decomposed into an information-related component and an

uncorrelated term. The latter arises from price discreteness, temporary liquidity effects

and inventory control. Information-based pricing errors are related to adverse selection.

The presence of traders with superior information about assets, and a lagged adjustment

of the market to new information.

As discussed by Hasbrouck and Schwarts (1988), this decomposition can be obtained

only by studying the components of the bid-ask spread. French and Roll (1986) suggest

that the role of information is crucial in determining the volatility of returns. Price

volatility can be the result of informational asymmetry, rather than a consequence of

lack of liquidity. These are aspects that cannot be accounted for by volume-based indices.

A second problem with volume indices is that they do no show how a sudden order

arrival can affect prices. This is the so called ‘order-induced effect’. In other words, volume

indices take into account only past links between changes in prices and volume. The reason

is that these indices are not based on theoretical models of dealer/specialist behavior.

An additional issue is discussed by Marsh and Rock (1986). They argue that

conventional liquidity indices tend to overestimate the impact of price changes on large

transaction deals. Arguably, they also underestimate the effect of price changes on small

transactions. This issue arises from the lack of proportionality between prices and volume

that characterizes all the volume-based liquidity measures.

Despite these shortcomings, measures of volume can be employed fruitfully to model

liquidity for agency markets rather than for dealer markets. In fact, the problem, especially

for the volume indices computed on a daily basis, is that they do not take into account

the effect of large block trades, which are instead very common in dealer markets. On the

other hand, these measures represent a useful starting point for a more careful analysis.
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4 Price-variability indices

In this category we can include the measures that infer asset or market liquidity directly

from price behavior. We consider the Marsh and Rock (1986) liquidity ratio and the

variance ratio, together with its implications for market efficiency. A second group of

measures infers the liquidity condition by using mere statistical techniques.

4.1 The of liquidity ratio Marsh and Rock (1986)

Differently from the liquidity measures considered so far, Marsh and Rock (1986) assume

that price changes are independent from trade size, except for large traded blocks. This is

based on the argument that standard liquidity ratios are strongly affected by trade size.

The expression for this index is given by:

LRi
MR =

1

M i

M i∑

m=1

∣∣∣∣
P i
m − P i

m−1

P i
m−1

∣∣∣∣ · 100 (11)

where M i is the total number of transactions for asset i over a given period. The expression

after the summation term denotes the absolute value of percentage price change over

two subsequent periods. Intuitively, the index (11) considers the relation between the

percentage price change and the absolute number of transactions, rather than the traded

volume. In some sense, this index shifts the attention from the aggregate market to the

microstructure, which is represented by number of transactions within a given time horizon.

In fact, differently from the volume-based indices where traded volumes drive the scaling

effect, here the scaling variable is the number of transactions. This reflects the idea that

the liquidity of an asset is better represented by the price effects of transactions, rather by

the impact on volumes.

To provide a better explanation, let us consider two assets. Asset A is traded in

large blocks once a day, while stock B is exchanged for the same total volume but for

transactions of smaller size each. Common sense would lead us to suggest that asset B is

more liquid than asset A. Unfortunately, even if price changes for both A and B were similar

across markets, we would not be able to reach this conclusion by looking at volume-based

liquidity measures. This example helps to clarify the value generated by the liquidity index

of Marsh and Rock (1986).

The main issue with this type of index is determined by the arbitrariness involved

in its formulation. In particular, the length of the period over which the index can be

computed is not explicitly specified. It is clear, however, that an index computed on a

hourly basis can deliver results different from those of a daily or weekly time span. Owing

to its underlying properties, it is reasonable to adopt The March and Rock ratio for short

horizons. Differently from alternative indices though, this measure is suitable for both

dealer and auction markets.
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4.2 The variance ratio

The variance ratio is one of the most widely-used indices in the literature. Owing to its

versatility, it can be applied to contexts indirectly connected with market liquidity, such

as the study of volatility and intraday effects. This liquidity measure, also called market

efficiency coefficient (MEC), measures the impact of execution costs on price volatility over

short horizons.

The idea behind the construction of this index can be summarized as follows. With

high execution costs, asset markets are characterized by price volatility in excess of the

theoretical volatility of equilibrium prices. Therefore, a more liquid market implies a

smaller variance of transaction prices around the equilibrium price. The reason is that the

difference between actual and equilibrium price in a liquid market is smaller than what

one should observe in an illiquid market.

Denote by var
(
Ri

T

)
the long-term variance, and by var

(
Zi
T

)
the short-term variance

of asset return i. Let T be the number of subperiods into which longer periods of time can

be divided. The variance ratio V Ri can be defined as follows:

V Ri =
var

(
Ri

T

)

T · var
(
Zi
T

) (12)

This index proposes a metric that compares the long-term variance with the short-term

variance. When V Ri < 1, it suggests that the market is illiquid. In other words, the

short-term retur is higher than the long-term return. If we assume that the markets are

in equilibrium in the long run, this implies a large discrepancy between the short and

long-term equilibrium return. Of course, when the two returns coincide, the liquidity

index is equal to one.

The variance ratio is often used to test for market efficiency. This is done by measuring

the deviation of an asset price from the random hypothesis. To provide intuition on this

point, let the asset price Pt follow a random-walk process:

Pt = Pt−1 + ηt (13)

where ηt is a homoskedastic disturbance uncorrelated over time, i.e. E (ηt) = 0, V ar (ηt) =

σ2η, E (ηtητ ) = 0 for all τ 6= t. Under the random walk hypothesis, from (13) we obtain

∆Pt = ηt. To construct the variance ratio, we can show that:

var (Pt − Pt−2) = var (Pt − Pt−1) + var (Pt−1 − Pt−2) = 2σ2η

var (Pt − Pt−T ) = Tσ2η

Therefore, under the random walk hypothesis, ∆Pt = RT , which delivers the variance
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ratio:

V RT =
var (Pt − Pt−T )

Tσ2η
= 1

For V RT = 1, there are no deviations from the random walk hypothesis.

Now let us consider the implications of the deviation from the random walk hypothesis.

Let us look at the following case:

var (Rt +Rt−1) = 2V ar (Rt) + 2Cov (RtRt−1)

The variance ratio can be constructed from:

V R (2) =
2V ar (Rt) + 2Cov (RtRt−1)

2V ar (Rt)
= 1 + 2

[
Cov (RtRt−1)

2V ar (Rt)

]
=

= 1 + 2ρ (1)

where ρ (1) is a proxy for the correlation coefficient, whose expression is given by:

ρ (1) =
Cov (RtRt−1)

2V ar (Rt)

If we generalize this argument, we obtain a general expression for the variance ratio:

V R (T ) =
V ar (Rt)

TV ar (RT )
= 1 + 2

T−1∑

s=1

(
1−

s

T

)
ρ (s) (14)

With serially-uncorrelated asset returns, i.e. if ρ (s) = 0, for s > 1, the variance ratio is

equal to 1. With autocorrelation of order 1,

Rt = φRt−1 + εt

and E (εt) = 0, V ar (εt) = σ2ε , the expression for the variance ratio becomes:

V R (T ) = 1 + 2
T−1∑

s=1

(
1−

s

T

)
φk

The variance ratio can be computed over arbitrary time intervals. For example,

Hasbrouck and Schwarts (1988) calculate it over three distinct time intervals. They

consider the ratio of two-day to half-hour variance, the ratio of one-day to one-hour

variance, and the ratio of two-day to one-day return variance. The logic behind this

analysis lies in the different informational content of short-term and long-term variance.

In fact, a sequence of short-term transactions tends to affect the market price in a way

more marked than a set of transactions measured over a longer period.

From these considerations, it is reasonable to expect a value for the variance ratio
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index larger than unity in the presence of sequential information arrival, market-maker

intervention and other factors implying undershooting of price level. It is clear, however,

that this index cannot account for all the causes of liquidity costs.

The variance ratio displays two additional shortcomings. The first one is related to its

sensitiveness to the time interval chosen for its calculation. In fact, this can potentially

generate contrasting results when the time chosen is differently chosen. A second drawback

concerns the fact that it is relation to a notion of equilibrium prices that are unobservable.

The variance ratio is, however, measured from actual transaction prices. This implies that

it takes into account the trading activity occurred both inside or outside the limits of the

bid-ask spread.

4.3 Event studies

The event study methodology consists in examining asset price behavior around the time of

a particular event of an informational announcement. This method is well suited to study

assets around their time of issuance. This is a time when the expectation of obtaining

buoyant liquidity conditions tends to generate price pressures as the asset is introduced in

the market.

Average market conditions can provide insights on liquidity. With abnormally high

returns as an asset is introduced in the market, an additional supply of liquidity provides

benefits for the market by generating higher returns. However, this observation can be

interpreted in an alternative way. High returns can be thought of as way to compensate

investors for the lack of efficient liquidity services. This inefficiency can arise from the

presence of transaction costs because of the existence of transaction costs. In other words,

when the discounted value of future transaction costs is incorporated in price quotations,

asset returns account also for liquidity effects.

As this brief discussion suggests, it is difficult to provide a widely accepted

interpretation of changes in liquidity by considering only the observed patterns of asset

returns and volume exchanged. Brown and Warner (1980, 1985) and Peterson (1989)

suggest that there is no unique way to analyze liquidity through event studies. A general

prescription is that this type of analysis should complement the information from a set of

indices usually adopted for technical analysis to provide a better assessment of the event

under scrutiny.

4.4 Estimation methods based on vector autoregressions

Vector autoregressive (VAR) models are commonly used in macroeconomics to identify the

effects of various shocks on the structure of the economy. In the microstructure literature,

VAR models are employed to study the transmission channels of shocks across markets. A

representative example of this strand of literature consists in Chung, Han and Tse (1996),

who investigate the relations between various stock indices in the NYSE and the AMEX.
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Ther results suggest that the NYSE is more liquid than the AMEX. The superiority of the

NYSE in terms of liquidity is established by showing that the lagged NYSE index has the

strongest explanatory power for changes in the price indices of the AMEX. This is obtained

by studying the share of price variance of each index explained by exogenous shocks to the

NYSE.

Hasbrouck (2002) introduces two additional applications of the VAR methodology. For

instance, Hasbrouck (1988, 1991 and 1993) considers the deviations of actual transaction

prices from unobservable equilibrium prices. This modelling approach starts with the

decomposition of transaction prices into a random walk and a stationary component, along

the same lines proposed in macroeconomics by Phillips and Solo (1992). The random walk

component identifies the efficient price. The stationary component pins down the difference

between the efficient price and the actual transaction price, also called pricing error. The

dispersion of the pricing error is a natural measure of market quality.

The methodology proposed by Hasbrouck (2002) can be used to study a second relevant

issue, namely the extent to which fluctuations in a given market arise from swings in

another market. This issue has opened the door to the use of cointegration analysis in

empirical market microstructure.

4.4.1 Cointegration in market microstructure

Financial markets are characterized by ‘price multiplicity’. In particular, different investors

can provide different valuations and attach different prices to the same asset. Also, different

market venues can be availbale for the same asset. Following Hasbrouck (2002), we can

guess a statistical model for the joint behavior of two prices for the same asset linked

together by a no-arbitrage or equilibrium relationship. Basically, the two prices incorporate

a single long-term component that takes the form of a cointegrating relation.

Cointegration involves restrictions stronger than those implied by correlation. Two

stock prices can be positively correlated but not cointegrated. If stock A is cointegrated

with stock B, there exists an arbitrage relationship that ties together the two stocks. In

addition, the ask and bid quotes for stock A are also cointegrated. The reason is that the

difference between the quotes can often be characterized as a stationary variable, meaning

that it cannot explode in an unbounded way. The price of a stock on two different exchanges

can be different at any point in time, but it is natural to assume that this difference reverts

to its mean over time.

To provide a simple example, let us consider a security that trades in two different

markets. The price on market 1 is denoted as P1t, while the price on market 2 is given by

P2t. Suppose that the two prices are driven by the same efficient price as:

pt =

[
p1t

p2t

]
=

[
1

1

]
Vt +

[
S1t

S2t

]

17



where Vt is the (unobservable) efficient price, and S1t and S2t are the pricing errors

associated to each security. The unobservable efficient price follows a random walk:

Vt = Vt−1 + ut

The component of the pricing error vector can be viewed as originating from bid-ask

bounce, price discreteness or inventory effects. In other words, we require that the

characteristics of the pricing errors do not generate a permanent effects on prices.

This idea can be formalized by assuming that S1t and S2t evolve according to a

zero mean-covariance stationary process. From these assumptions, we can obtain a

moving-average representation for the return ∆pt :

∆pt = εt + ψ1εt−1 + ψ2εt−2 + ...

where εt = [ε1t, ε2t] consists of innovations reflecting information in the two separate

markets. The sum Ψ(1) = I + ψ1 + ψ2 + ..., with I as a 2× 2 identity matrix, reflects the

impact of an initial disturbance on the long-term component. The random-walk variance

is:

σ2u = ΨΩΨ
′

where Ω = V ar (ε).

The simplest approach for achieving identification in the impat of innovations considers

the random-walk variance contribution from both markets:

σ2u =
[
Ψ1 Ψ2

] [ σ21 σ12

σ12 σ22

][
Ψ1

Ψ2

]

If this covariance matrix is diagonal, then we can identify the model in order to deliver a

clean decomposition of the random walk variance between the two markets. However,

if the covariance matrix is not diagonal, then the covariation between the two prices

cannot be easily attributed to either market. Hasbrouck (1996) introduces a bound for the

information shares coming from each market through an orthogonalization of the covariance

matrix.

The following question is whether there are alternative restrictions that deliver a better

identification. A fruitful approach has been introduced by Harris, McInish and Wood

(2000) who assume a generic stochastic process in place for Vt. This can be denoted

as ft and assumed I(1), although not necessarily a random walk. Thus, to price in multiple

markets, Harris, McInish and Wood (2000) specify a process for Vt such that Vt = Apt ,

where A = [a1, a2] is subject to a normalization a1 + a2 = 1. The interpretation of the

parameter vector A is a very appealing feature of this framework.
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The approach of McInish and Wood (1992) suffers of several shortcomings. For

instance, it is unclear why one should not consider stochastic processes where past prices

reveal additional information. In general, we can modify this simple model to take into

account the different effects of revealing both public and private information. Hasbrouck

(2002) follows this avenue to to study alternative mechanisms of attribution of price

discovery in multiple markets. In this case, the price component of interest is not forced

to be a random walk. Hasbrouck (2002) follows this approach because the application of

permanent-transitory decompositions to microstructure price data tends to characterize

non-martingale pricing factors, which are inefficient proxies for optimally-formed and

updated expectations.

An additional extension in multi-market analysis consists in using price data with

differing frequencies. Hasbrouck (2002) shows that the usual method of collecting data

from different markets in which trades occur simultaneously can beprovide misleading

inferences on price discovery. In this case, information on price leadership may not be

accounted for.

5 Measures based on transaction costs

Among the transaction costs measures, the bid-ask spread and its variants are the indicators

of market liquidity that are used most commonly. The reason is that they convey insight on

information sharing in the market. The intuition behind the use of the bid-ask spread lies

in the fact that market prices depend the side of the market that initiates the trade.

Buyer-initiated trades are concluded at the ask price, while seller-initiated trade are

concluded at the bid price. The difference between the best (lowest) ask price and the

best (highest) bid price defines the bid-ask spread.

5.1 The bid-ask spread

In general, the bid-ask spread is a measure of transaction costs in dealer markets like the

NASDAQ. A market bid is the highest price at which a dealer is willing to buy a stock,

and at which an investor intends to sell. A market ask is the lowest price at which the

dealer is willing to sell the stock. We should stress that the expression ‘highest price’

stands for ‘the best market offer’. Since the dealer posts both the bid and ask quotes, the

spread between these quantities can be interpreted as the price that the market pays for

the liquidity services offered by the dealer.

Huang and Stoll (1996) suggest that specialists often operate as dealers. This is due to

the institutional characteristics of specialists. Typically the specialist disseminates a quote

in the market. Market orders are then worked out against limit orders previously placed

on the quote posted by the specialist. The disseminated quote is set exactly as the bid-ask

spread on the dealer market.
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Let At denote the ask price, Bt the bid price, and St the spread at time t. Formally,

the quoted absolute bid-ask spread is defined as:

St = At −Bt (15)

Frequently the literature reports also a measure of half of the spread, given by St/2, and

the midpoint quote, given by the best bid and ask quotes in effect for a transaction at time

t. From (15), we can see that more liquid markets generate lower quoted spreads. This

highlights the existence of a negative relationship between the spread and asset prices, as

explicitly discussed by Amihud and Mendelson (1991).

From this simple measure, it is possible to construct additional indices that are often

used to model market liquidity. One of these consists in the percentage term at which

spread is computed. Given the quote midpoint as Mt = (At +Bt) /2, a measure of the

percentage spread pSt is given by:

pSt =
At −Bt

Mt
(16)

The spread itself represents a measure of transaction costs, rather than a liquidity index

in pure sense. However, in a modern market, high transaction costs represent a source of

a low liquidity.

Cohen et al. (1986) characterize the distinction between the dealer spread and the

market spread. The dealer spread is the simple bid-ask spread defined in (15). The market

spread, instead, is the difference between the highest bid and the lowest ask across dealers

quoting the same stock at the same time. According to Hamilton (1991), a market spread

can be lower than a dealer spread. In fact, the cost of immediacy to investors is represented

by the size of the market spread. The state of competition and the order processing costs

are rather related to the absolute magnitude of the spread.

An additional issue characterizing the simple spread analysis has to do with the fact

that it cannot capture the impact of large block-size transactions on market prices. In fact,

the spread measure implicitly assumes that trades occur only at the posted quotes. In this

case it is difficult to establish if the transactions occurred for a given price are formed inside

or outside the quoted spread. Moreover, given the ability of the market spread to drift

away from the one consistent with the perfect market hypothesis, the size of the spread

can reflect three main microstructural phenomena. These consist of a pure execution cost,

an inventory cost position of the dealer, and an information component cost. In order

to detect these various components, the literature has proposed many empirical tests and

theoretical models. We review these frameworks in the following sections.

The study of the spread in absolute terms represents only a preliminary stage towards

a deeper analysis of transaction costs and of information asymmetry. In fact, the

decomposition of the spread components can allow to disentangle the most important
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effects arising from trading activities.

5.2 A measure of implied spread

The measure of Roll (1984) is one of the most famous liquidity indices proposed in the

microstructure literature. Roll’s idea consists in using a model to infer the realized spread

(the effective spread) that is reflected from the time series properties of observed market

prices and/or returns.

The main drawback of this type of model is that it does not offer any insights on the

possible components of the spread. The reason is that this framework is based on the

assumption of homogeneous information across traders. Therefore, the adverse selection

component is missing. The magnitude of the spread reflects only the so-called order

processing costs, which are considered as having transitory effect, in contrast to information

effects, that have permanent effects.

Let Pt denote the observed transaction price of a given asset at time t, oscillating

between bid and ask quotes that depend on the side originating the trade. We assume that

this reproduces the negative serial covariance observed in actual price changes, documented

by Fama and French (1992). The equilibrium price Vt follows a pure random-walk process

with drift:

Vt = V + Vt−1 + εt (17)

where εt is the unobservable innovation in the true value of the asset between transaction

t− 1 and t. This is an i.i.d. term with zero mean and constant variance σ2ε . The observed

price can be described as follows:

Pt = Vt +
S

2
Qt (18)

where S denote the quoted absolute spread, assumed to be constant over time. Qt is

an indicator function that takes values -1 or 1 with equal probabilities depending on the

fact that the t-th transaction may occur at the bid or at the ask.5 Thus, the change in

transaction prices is given by:

∆Pt = V +
S

2
∆Qt + εt (19)

To obtain a reduced form, we need two additional assumptions:

• the market is informationly efficient, that is cov(εt, εt−1) = 0, and

• buy and sell orders have equal probability, i.e. cov(∆Pt,∆Pt−1) = −1.

5In particular, Qt = −1, for seller inititiated transaction, Qt = +1, for transaction initiated by a buyer
at the ask quote.
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The probability distribution of trade direction can be represented in the following form:

Qt−1 = −1 Qt−1 = +1

Trade at bid Trade at ask

Trade Sequence → Bt−1Bt Bt−1At At−1At At−1Bt

↓ 0 2 0 -2

BtBt+1 0 1/4 0 1/4

BtAt+1 2 1/4 0 0 1/4

AtAt+1 0 0 1/4 1/4 0

AtBt+1 -2 0 1/4 1/4 0

Thus, since buy or sell transactions are equally likely, the joint distribution can be

characterized as:

∆Qt

2 0 -2

2 0 0 1/8

∆Qt+1 0 1/8 1/4 1/8

-2 1/8 1/8 0

It is not difficult to verify that the autocovariance of trades is given by:

Cov (∆Qt,∆Qt+1) = −4 ·
1

8
− 4 ·

1

8
= −1

Therefore, the autocovariance function of price variations is:

Cov (∆Pt,∆Pt−1) = Cov

(
S

2
∆Qt,

S

2
∆Qt−1

)
=
S2

4
Cov (∆Qt,∆Qt−1)

from which we obtain:

Cov (∆Pt,∆Pt−1) = −
S2

4
(20)

Equation (20) provides the measure of spread defined by Roll (1984). Roll’s estimator

is obtained by estimating the autocovariance and solving for S. The estimator for the

serial covariance is:

Ĉov =
1

n

n∑

t=1

∆Pt∆Pt−1 −∆P
2

(21)

where ∆P
2
is the sample mean of {∆P}. It is possible to show that the population

distribution of Ĉov is asymptotically normal as n increases (see Harris, 1990). Moreover,

the serial covariance estimator has a downward bias in small samples of data with low

frequency. In particular, the bias is large for data with frequency higher than daily.
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The implications from (20)-(21) are that the more negative the return autocorrelation is,

the higher the illiquidity of a given stock will be. Also, as discussed by Lo and MacKinlay

(1988), there is a relation between the variance ratio and Roll’s (1984) measure of liquidity.

This link arises from the dependence of the variance ratio on the autocorrelation of daily

returns. With returns that exhibit a negative autocorrelation, the measure of Roll (1984)

generates higher illiquidity and a variance ratio lower than one.

The main shortcoming of this measure consists in its inability to capture asymmetric

information effects. The magnitude of the spread described here can be used only to study

the size of pure order-processing costs. As stressed by Huang and Stoll (1997), short-term

returns can be affected by a multiplicity of factors different from those described here. The

point is that the measure of Roll (1984) can be safely applied only under the assumption

that the quotes do not change in response to trades. This condition would hold only if

there were no informed traders in the market, and the quotes did not adjust to compensate

for changes in inventory positions.

According to Huang and Stoll (1996), in the case of the NYSE, Roll’s measure is much

lower than the effective half-spread, while for NASDAQ it is ‘virtually’ identical to the

effective spread. This is the same as saying that specialist dealers adjust their quotes

in response to the trades because of information effects. At the same time, NASDAQ

dealers do not adjust their quotes, thus supporting the assumption of a minimal role for

asymmetric information in this market.

5.3 The role of asymmetric information

Glosten (1987) is the first contribution that models the role of information asymmetries in

market microstructure. This paper introduces the distinction between the effects arising

from order processing and those from adverse information. As previously remarked,

the first type is transitory, while the latter is permanent. On the other hand, the

adverse-information component produces non-transitory impacts because it affects the

equilibrium value of the security. There are many reasons for price effects to be long-lasting.

For instance, this can arise when market-makers engage in trades with investors who possess

superior information. Thus, an order placed by a trader can be correlated with the true

value of the asset.

The model of Glosten (1987) includes two basic equations:

Vt = V + Vt−1 + (1− γ)
S

2
+ εt (22)

Pt = Vt + γ
S

2
Qt (23)

where γ is the fraction of the quoted spread due to order processing costs, and (1− γ) is
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the share arising from adverse information.6 Note that εt reflects the effect arising from

the arrival of public information. Thus, the true price Vt fully reflects all the information

available to the public immediately after a transaction of sign t, and the information

revealed by a single transaction through the sign of the variable Qt. We should stress that

the model of Roll (1984) is nested by this specification and obtains from γ = 1. It is not

difficult to prove that the autocovariance of the price change is equal to:

Cov (∆Pt,∆Pt−1) = −γ
S2

4
(24)

5.4 The relation between inventory and adverse-information effects

Inventory and information effects are key determinants of liquidity conditions. With

information effects, prices move against the dealer after a trade. They fall after a dealer

purchase, and they rise after a dealer sale. This is often denoted as a ‘price reversal’, and

consists of a situation where a dealer trades against informed agents. In this case, a market

maker can incur in significant losses.

The idea of price reversal arises from the observation that the realized spread is often

different from the quoted spread. In Stoll (1989), the quoted spread S is taken as constant

and depends only on the transaction size, which is constant as well. In practice, the model

of Roll (1989) assumes that transactions occur either only at the bid or ask quotes. If

inventory-holding costs are included into the model, the dealer will have the incentives to

change the spread to either induce or inhibit additional trading movements. In fact, after

a dealer purchase (a market sale), bid and ask quotes drop in order to induce dealer sales

and disincentivate additional dealer purchases. However, bid and ask quotes increase after

a dealer sale (a market purchase) to inhibit additional dealer sales.

This type of spread revision operates in the same way both in the case of inventory

control and adverse information. However, the reasons for spread revisions are different.

With asymmetric information, a buyer (seller) initiated transaction conveys informations

on a higher (lower) expected price of the asset. This is due to the expectation by market

participants that active traders possess superior information.

Summing up, different reasons for a spread revision can produce similar observed effects.

The inventory effect pushes the dealer towards a quote revision in order to avoid a process

of trade that would even out his inventory position. With asymmetric information there

is the need for the dealer to protect himself from adverse trading directions generated by

better informed counterparties.

6The notation for the other variables is the same as the one outlined in the previous sections.
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5.5 The model of Stoll (1989)

The model of Stoll (1989) presents a way to jointly estimate the three key components of

the spread, namely the shares due to order processing, inventory and adverse information.

Notably, this framework allows for the possibility that order flows arising from different

motives need not occur with the same probability. To fix the ideas, let θ denote the

probability of a price reversal, i.e. the unconditional probability of a trade change: θ =

Pr {Qt = Qt−1}. The size of a price change conditional on a reversal is given by (1− λ)S.

In other words:

(1− λ)S = ∆Pt | {Qt 6= Qt−1}

where

{Qt 6= Qt−1} =

{
Pt−1 = Bt−1, Pt = At, or

Pt−1 = At−1, Pt = Bt

In the framework of Stoll (1989), the price change ∆Pt arises from the fact that the initial

trade is at the bid or at the ask. Thus, for transactions starting at the ask price, we have:

∆Pt =

{
(Bt −At−1) = (1− λ)S, with probability θ

(At −At−1) = −λS, with probability (1− θ)

and for transactions starting at the bid price:

∆Pt =

{
(At −Bt−1) = (1− λ)S, with probability θ

(Bt −Bt−1) = −λS, with probability (1− θ)

Therefore, the expected price change conditional on an initial transaction at the ask is

given by:

E {∆Pt | Pt−1 = At−1} = − (θ − λ)S (25)

while the expected price change conditional on an initial transaction at the bid is:

E {∆Pt | Pt−1 = Bt−1} = (θ − λ)S (26)

The realized spread is the dealer’s gain after two transactions, consisting of a purchase

and a sale. In particular, it denotes the difference between the expected price change after

a dealer purchase and the expected price change after a dealer sale. Given the effective

spread s, we have:

s = 2 (θ − λ)S (27)
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Note that the realized spread is the remuneration for the services provided by a market

maker, including all the components discussed earlier. The fraction of spread given by (27)

includes both the order processing and the inventory component. The adverse information

term consists in the fraction of the spread not earned by the market maker, and is equal

to: [1− 2 (θ − λ)S].

To provide an empirical implementation of this approach, we can distinguish between

two cases, occurring when it is possible to observe directly the trade direction, and when

trade data are not available. If market data are available, we can directly estimate a version

of equations (25)-(26) in the following form:

(
siτ | Bi

τ

)
=

[(
P i
t+τ − P i

t

)
| P i

t = Bi
τ

]
(28)

for trades at the bid and:

(
siτ | Ai

τ

)
=

[(
P i
t+τ − P i

t

)
| P i

t = Ai
τ

]
(29)

for trades at the ask. In equations (28)-(29), τ indicates the time length after which a

subsequent price is observed. The choice of the time horizon adopted in the estimation is

crucial. If the time frame is too short, the subsequent price may fail to reflect a reversal,

and may reflect only another trade in the same direction. However, if the time horizon

is too long, we might obtain results affected by excessive price volatility due to frequent

conseutive price changes.

Huang and Stoll (1996) run an empirical exercise by using four alternative time

horizons, namely between five and ten minutes after the initial trade at t, with the first

trade occurring at least five minutes after the initial trade, with the first trade between 30

and 35 minutes after the initial trade, and with the first trade occurring at least 30 minutes

after the initial trade. The findings of Huang and Stoll (1996) suggest that dealers in the

NASDAQ face a lower realized spread than on NYSE.

When trade data are not available, we need to resort to information from the statistical

patterns characterizing an asset price. It can be shown that the covariance of price changes

is given by:

Cov (∆Pt,∆Pt+1) = S2
[
λ2 (1− 2θ)− θ2 (1− 2λ)

]

In order to detect inventory costs, Stoll (1989) presents also the autocovariance of changes

in quotations. This takes the form:

Cov (∆Qt,∆Qt+1) = S2λ2 (1− 2θ) Q = A,B

Under the assumption of constant quoted spread, this covariance can be computed either

from changes in the bid or the ask quotes, so that Cov (∆Bt,∆Bt+1) = S2λ2 (1− 2θ),
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Table 1: Covariance in the model of Stoll (1989)

Spread Determinant Cov (∆Pt,∆Pt+1) Cov (∆Qt,∆Qt+1)

Order Processing: θ = 1/2, λ = 0 −1

4
S2 0

Adverse Information: θ = 1/2, λ = 0.5 0 0
Inventory Costs: θ > 1/2, λ = 0.5

(
−1

4
S2, 0

) (
−1

4
S2, 0

)

or Cov (∆At,∆At+1) = S2λ2 (1− 2θ). The expressions for the covariance delivered by

different versions of the model are collected in table 5.5.

The theory of bid-ask spread considered thus far is based on several assumptions

that can be challenged. George, Kaul and Nimaledran (1991) show that the available

estimators of spread components are typically biased and inefficient. This is due to

two important facts. The first one is that stock returns contain a statistically significant

component that is positively autocorrelated, as showed by George, Kaul and Nimaledran

(1991). Moreover, transaction returns display a large unexpected return component.

George, Kaul and Nimaledran (1991) introduce time-varying expected returns by assuming

V t 6= V . According to their model, the autocovariance of quote changes are positive.

Other approaches for the estimation of the spread components include the so-called

‘trading indicators’. The models proposed in this context, such as Glosten and Harris

(1988), Glosten (1987) and Madhavan, Richardson and Roomans (1997) do not contain

any assumption about the arrival of orders. Only the actual direction of trades affects the

parameter estimation.

Given their structure, these models require a very careful specification of the type of

market under study. In this respect, they are not general enough. Depending on whether

there is a quote or an order driven market, we can observe a different behavior of the

transaction price that is related to the order size. Therefore, for small transactions, the

model of Glosten and Harris (1988) underestimates the adverse selection component, and

overestimates the order processing component. The opposite holds for transactions of

large blocks. Within the class of models of trade indicators, the framework proposed

by Madhavan, Richardson and Roomans (1997) allows to disentangle the effects from

adverse information and inventory changes. The price mechanism proposed displays an

asymmetric information component of the spread related to innovations in the order flow.

Madhavan, Richardson and Roomans (1997) construct a trade indicator model that allows

to consider also trades inside the quotes. The model proposed is general enough to capture

the information advantages linked to unexpected trading movements.
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5.5.1 The model of Huang and Stoll (1997)

The framework proposed by Huang and Stoll (1997) introduces a three-part decomposition

of the spread. The model is based on the following unobservable equilibrium price as:

Vt = Vt−1 + η
S

2
Qt−1 + εt (30)

In equation (30), the term η denotes the percentage of the half spread due to adverse

selection, εt is a public information shock serially uncorrelated over time. Qt is a trade

indicator variable, which is equal to 1 if the transaction is buyer-initiated, and is equal to

-1 if the transaction is started at the bid.

The last trade conveys relevant information in determining the true value of the stock

price. Given a midpoint quote Mt = (At +Bt) /2, Huang and Stoll (1994) assume the

following relationship with the unobserved price:

Mt = Vt + δ
S

2

t−1∑

i=1

Qi (31)

where δ measures the inventory effect, and
∑t−1

i=1
Qi is the cumulative inventory from

market opening until t−1. In particular, Q1 is the initial inventory of the day. Combining

(30) with (31), we obtain the change in the midpoint quote:

∆Mt = (δ + η)
S

2
Qt−1 + εt (32)

The traded price Pt is:

Pt =Mt +
S

2
Qt + ut (33)

In this model S denotes the traded spread. This is different from the quoted (posted) spread

St because it reflects also trades inside the quotes but outside the midpoint. Combining

(30)-(33) we obtaint:

∆Pt =
S

2
∆Qt + (δ + η)

S

2
Qt−1 + ζt (34)

where ζt = ∆ut + εt. Equation (34) reflects only a two-way decomposition of the spread.

The order processing cost is defined as 1 − δ − η. However, by estimating equation (34)

alone, it is not possible to draw any conclusion on either the relative importance of the

adverse-information component, or the inventory effect. Only a simultaneous three-way

decomposition of the spread can fully uncover all these effects jointly. For this purpose,

we need to add to the model an additional equation specifying the probability of trade

direction.
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Huang and Stoll (1997) introduce the assumption of serial correlation in trade flows:

E (Qt−1 | Qt−2) = (1− 2θ)Qt−2 (35)

with θ as the probability of change in trade direction (i.e. the probability that a trade at

the bid at time t− 1, is followed by a trade at the ask at time t). For θ 6= 0.5, the change

in the true price is given by:

∆Vt = η
S

2
Qt−1 − η

S

2
(1− 2θ)Qt−2 + εt (36)

Equation (36) has three components. The first one, represented by η S
2
Qt−1, displays

the information conveyed by the last trade. The second part, given by η S
2
(1− 2θ)Qt−2,

introduces the additional persistence in information that is not accounted for by the

surprise term εt. If θ = 1/2 equation (36) collapses into (30). The reader should note

from (35) and (36) that changes in the true value of the asset are unpredictable until the

release of public information contained in εt shows up, so that E (∆Vt | Vt−1, Qt−2) = 0.

We can combine (36) and (31) to obtain the change in midpoint quote:

∆Mt = (δ + η)
S

2
Qt−1 − η

S

2
(1− 2θ)Qt−2 + εt (37)

Equation (37) stresses the fact that the inventory effect can be detected only after the trades

are executed. In this case, the quotes are revised. This allows to distinguish between the

adverse-information component and the inventory component.

Taking the expectation of equation (36) conditional on the information obtained after

observing Mt−1 and before Qt−1 and Mt, we get:

E (∆Mt |Mt−1, Qt−2) = δ
S

2
(1− 2θ)Qt−2 (38)

From this equation we can see that the expected change in the midpoint depends only

on δ, the inventory cost component. The inventory-quote response to a trade is given by

δS
2
. However, from (37), the change in the midpoint quote due to the inventory effect is

much smaller. To get the three-way spread decomposition, we can combine (33) and (37)

to deliver:

∆Pt =
S

2
Qt + (δ + η − 1)

S

2
Qt−1 − η

S

2
(1− 2θ)Qt−2 + ζt (39)

Thus, by estimating simultaneously (35)-(39), we can identify all the three spread

components, namely δ, η and 1 − δ − η, together with the probability of a trade reversal

θ. The reader should note that S denotes the effective spread, which is estimated. If the

traded spread is replaced with the posted spread St, then model consists of equation (35)
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and:

∆Mt = (δ + η)
St−1

2
Qt−1 − η

St−2

2
(1− 2θ)Qt−2 + εt (40)

In this case, the parameter space is reduced. This is beneficial only when a limited dataset

is available.

Huang and Stoll (1997) test the model on trades and quotes for large and

actively-traded stocks in 1992. From their results, the average order processing of the

traded spread is 61.8%, the average adverse-information component is 9.6%, and the

average inventory cost component is 28.7%. Another interesting piece of evidence consists

in the fact that the adverse information component of the spread is smaller for large trades.

This is due to the fact that large trades usually tend to be negotiated outside the market,

so that the price fully reflects the information given by the last trade.

5.5.2 Empirical issues

An integrated approach on the analysis of the spread has been proposed by Huang and Stoll

(1994). They consider a two-equation framework where the determinants of quotes and

transaction prices are included to test for the relevance of competing microstructure

theories.

To shed light on the issue, let us consider the logarithm Mt of the midpoint quote. The

price (in logs) can be expressed as follows:

Pt =Mt +Wt (41)

where Wt is the deviation of the log of observed transaction price Pt from the log-midpoint

quote. This suggests that trades can occur also inside the quotes. Thus, the effective

spread is always less than the quoted spread. In equation (41), public dealer purchases

(sales) result in Wt > 0 (<0).

We take the first difference of equation (41) to get:

Pt − Pt−1 =Mt −Mt−1 +Wt −Wt−1 (42)

Let us define the return from official quotes Rp
t = Pt − Pt−1, with Rm

t = Mt −Mt−1. In

order to take the model to the data, we can specify the quote setting behavior from the

midpoint change Rm
t . In doing so, Huang and Stoll (1994) identify a fourth microstructure

effect that is not captured by previous models. The induced order-arrival effect captures

the idea that the probability of a public purchase changes through time after a dealer price

adjustment. This is determined by the ability of the market maker to induce changes in

order arrivals to cover for the entire cost of processing the orders. In general, the induced
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order arrival effect can be written as:

Pr ob [Wt > 0 | (Vt −Mt) > 0] > 0.5 (43)

As stated in (43), the divergence between the unobservable price Vt and the midpoint quote

depends on the inventory holdings of the supplier.

The subsequent step considered by Huang and Stoll (1994) consists in specifying the

pattern of quote returns Rm
t as follows:

Rm
t = E

[
RV

t | Ωt−1

]
+ g (∆It−1) + εt (44)

where E
[
RV

t | Ωt−1

]
is the expected value of the consensus return, i.e. the return earned

on the expected price changes of the true price (expressed in logs): RV
t = Vt − Vt−1. In

equation (44), Ωt−1 denotes the set of information available at time t, while g (∆It−1) is

the inventory change of the quote return. To study the information effects, the expected

component in equation (44) can be conditioned on a subset of variables reflecting the

availability of public information:

E
[
RV

t | Ωt−1

]
= f

(
Wt−1, R

F
t−1

)
(45)

In Huang and Stoll (1994), the term RF
t−1 denotes the change in logarithm of the

S&P500 futures price. The presence of the term Wt−1 reflects the adjustment of the

market-maker to public information revealed through trading. If private information

was the main source of the bid-ask spread, the quote’s midpoint would be adjusted by

Wt−1 because the previous price deviation is the expected value of the private information

conveyed by trade.

The general specification of the model for the return on quote revision is:

Rm
t = η0 + η1R

m
t−1 + η2R

F
t−1 + η3Wt−1 + η4Ht−1 + η5L

A
t−1 + η6L

B
t−1 + η7Zt−1 + εt (46)

The inclusion of RF
t−1 is motivated by the fact that trading in stock index futures is cheaper

than trading in stocks. Thus, the diffusion of news can be detected through movements of

index futures. Huang and Stoll (1994) include Wt−1 to account for the information from

previous period’s trading. Huang and Stoll (1994) also consider the cumulative volume

traded on the single asset, given by Ht−1. In order to detect the inventory effect, equation

(46) includes two trade indicator variables constructed as follows:

LA
t−1

{
= 1 if Wt−1 > 0 and V olt−1 > 10, 000

= 0 otherwise

LB
t−1

{
= 1 if Wt−1 < 0 and V olt−1 > 10, 000

= 0 otherwise
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where V olt−1 indicates the share volume traded at time t− 1 for the asset. The expected

impact on the quote revision is positive for LA
t−1 and negative for LB

t−1.

Another crucial variable in equation (46) is represented by the quote revision return

Rm
t−1. This allows to take into account non-instantaneous quote revisions, as well as the

negative serial correlation in quote returns. Finally, quote returns are affected by the

difference between the logarithm of the quoted volume at the ask (depth at the ask) and

the logarithm of the quoted volume at the bid (depth at the bid), which is denoted as Zt−1.

The presence of inventory effects would imply a positive impact on Rm
t . In fact, if a dealer

has a large inventory position, he has an incentive to reduce quotes and to raise depth at

the ask to encourage transactions with the purpose of mitigating the inventory position.

In equation (46) there is also a signalling effect captured by the sign of η7. If η7 < 0,

we have a negative impact on quote changes, i.e. a large depth at the ask at time t − 1

signals the presence of sellers in the limit order book, inducing market participants to

revise quotes downward at time t.

To close the model, Huang and Stoll (1994) make an assumption about the stochastic

process for Wt:

Wt = ρWt−1 + ξt (47)

where ξt denotes the order arrival shock. For ρ = 0, the probability of a purchase or a

sale is independent from the sequence of trades. If the activity of dealer pricing creates an

inventory effect, then ρ < 0. By combining equations (43) and (47), we obtain:

Rp
t = Rm

t + (ρ− 1)Wt−1 + ut (48)

Plugging equation (46) into (48) delivers the expression for observed returns:

Rp
t = η0 + η1R

m
t−1 + η2R

F
t−1 + ηp

3
Wt−1 + η4Ht−1 + η5L

A
t−1 + η6L

B
t−1 + η7Zt−1 + ut (49)

where ηp
3
= η3+ρ−1, and ut = εt+ξt. From this transformation, we see that the coefficient

ηp
3

can now be decomposed into three components:

(i) the asymmetric information effect, given by η3, which is expected to be positive and

represents the information conveyed by the last trade;

(ii) the induced order arrival effect, given by ρ;

(iii) the bid-ask bounce effect. In the absence of information effect, the third component

is equal to -1, thus representing the tendency of price returns towards being serial

autocorrelation.

In empirical applications, the model consists of the two equations (46) and (49). These

are jointly estimated by GMM on intraday data. Huang and Stoll (1994) report results for
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the 20 most actively traded stocks in the NYSE.

The specification described in (49) includes the most important ingredients of the

microstructure theory. By setting η3 = 0 and ηp
3
= −1, we can test the order processing

theory of the bid-ask spread. With η3 = 1, ηp
3
= 0, we have the adverse information

theory of the spread, where quotes are adjusted in order to reflect the last trade Zt−1.

Additionally, the inventory holding cost theory can be obtained by setting 1 > η3 > 0,

0 > ηp
3
> −1 and η4 > 0. In this case, the direction of change in quotes follows the last

trade. Moreover, quote returns are adjusted by an amount that depends on the inventory

change. The induced order-arrival effect theory arises from ρ < 0, η1 < 0 and η7 > 0.

The key implication of this theory is that changes in the midpoint quotes affect the order

arrivals, leading to serial correlation in Wt. An important factor is captured by changes in

market depth. If depth is used to encourage order arrival, then we would expect a positive

η7. Alternatively, depth can be a signal or act as a barrier, leading to a negative sign in

η7. The effect of large trades in the adverse information theory is captured in the form of

a sign pattern as η5 > 0 and η6 < 0.

Summing up, the two equations (46) and (49) produce a full set of testable implications

and cross-equation restrictions. Among the various theories of market microstructure that

can be tested, we can also include the efficient market hypothesis of index futures. If an

asset market is efficient, the predominant prices fully reflect the information contained in

the index futures prices. In this case, we would expect η2 = 0.
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